题面

传送门

题解

据说有一个叫做欧拉公式的东西

\[e^{ix}=\cos(x)+i\sin(x)
\]

别问我为啥我今天第一次看到它

那么显然也有

\[e^{-ix}=\cos(x)-i\sin(x)
\]

两个柿子相加得到

\[e^{ix}+e^{-ix}=2\cos(x)
\]

\[\cos(x)={e^{ix}+e^{-ix}\over 2}
\]

同理可得

\[\sin(x)={e^{ix}-e^{-ix}\over 2i}
\]

然后左转抄板……

等会儿这里这个\(i\)咋整?

因为\(i^2=-1\),那么在模\(998244353\)意义下有

\[i^2\equiv -1\equiv 998244352\bmod(998244353)
\]

爆搜之后可以解得\(i\equiv 86583718\)

然后没有然后了

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]=' ';
}
const int N=(1<<18)+5,P=998244353,img=86583718,inv2=499122177,iimg=954952494;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
return res;
}
int inv[N],r[21][N],rt[2][N<<1],lg[N],lim,d;
int iinv(R int x){return x<=262144?inv[x]:mul(P-P/x,iinv(P%x));}
void Pre(){
fp(d,1,18){
fp(i,1,(1<<d)-1)r[d][i]=(r[d][i>>1]>>1)|((i&1)<<(d-1));
lg[1<<d]=d;
}
inv[0]=inv[1]=1;
fp(i,2,262144)inv[i]=mul(P-P/i,inv[P%i]);
for(R int t=(P-1)>>1,i=1,x,y;i<=262144;i<<=1,t>>=1){
x=ksm(3,t),y=iinv(x),rt[0][i]=rt[1][i]=1;
fp(k,1,i-1)
rt[1][i+k]=mul(rt[1][i+k-1],x),
rt[0][i+k]=mul(rt[0][i+k-1],y);
}
}
void NTT(int *A,int ty){
fp(i,0,lim-1)if(i<r[d][i])swap(A[i],A[r[d][i]]);
for(R int mid=1;mid<lim;mid<<=1)
for(R int j=0,t;j<lim;j+=(mid<<1))
fp(k,0,mid-1)
A[j+k+mid]=dec(A[j+k],t=mul(rt[ty][mid+k],A[j+k+mid])),
A[j+k]=add(A[j+k],t);
if(!ty)fp(i,0,lim-1)A[i]=mul(A[i],inv[lim]);
}
void Inv(int *a,int *b,int len){
if(len==1)return b[0]=iinv(a[0]),void();
Inv(a,b,len>>1);
static int A[N],B[N];lim=(len<<1),d=lg[lim];
fp(i,0,len-1)A[i]=a[i],B[i]=b[i];
fp(i,len,lim-1)A[i]=B[i]=0;
NTT(A,1),NTT(B,1);
fp(i,0,lim-1)A[i]=mul(A[i],mul(B[i],B[i]));
NTT(A,0);
fp(i,0,len-1)b[i]=dec(add(b[i],b[i]),A[i]);
fp(i,len,lim-1)b[i]=0;
}
void Ln(int *a,int *b,int len){
static int A[N],B[N];
fp(i,1,len-1)A[i-1]=mul(a[i],i);A[len-1]=0;
Inv(a,B,len);lim=(len<<1),d=lg[lim];
fp(i,len,lim-1)A[i]=B[i]=0;
NTT(A,1),NTT(B,1);
fp(i,0,lim-1)A[i]=mul(A[i],B[i]);
NTT(A,0);
fp(i,1,len-1)b[i]=mul(A[i-1],inv[i]);b[0]=0;
fp(i,len,lim-1)b[i]=0;
}
void Exp(int *a,int *b,int len){
if(len==1)return b[0]=1,void();
Exp(a,b,len>>1);
static int A[N];Ln(b,A,len);
lim=(len<<1),d=lg[lim];
A[0]=dec(a[0]+1,A[0]);
fp(i,1,len-1)A[i]=dec(a[i],A[i]);
fp(i,len,lim-1)A[i]=b[i]=0;
NTT(A,1),NTT(b,1);
fp(i,0,lim-1)b[i]=mul(A[i],b[i]);
NTT(b,0);
fp(i,len,lim-1)b[i]=0;
}
int A[N],B[N],n,ty;
void cos(int *a,int *b,int len){
static int p[N],A[N],B[N];
fp(i,0,len-1)p[i]=mul(img,a[i]);
Exp(p,A,len);
Inv(A,B,len);
fp(i,0,len-1)b[i]=mul(add(A[i],B[i]),inv2);
}
void sin(int *a,int *b,int len){
static int p[N],A[N],B[N];
fp(i,0,len-1)p[i]=mul(img,a[i]);
Exp(p,A,len);
Inv(A,B,len);
fp(i,0,len-1)b[i]=mul(dec(A[i],B[i]),iimg);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),ty=read(),Pre();
fp(i,0,n-1)A[i]=read();
int len=1;while(len<=n)len<<=1;
if(ty)cos(A,B,len);else sin(A,B,len);
fp(i,0,n-1)print(B[i]);
return Ot(),0;
}

洛谷P5264 【模板】多项式三角函数的更多相关文章

  1. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  2. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  3. 洛谷.4512.[模板]多项式除法(NTT)

    题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...

  4. 洛谷.4238.[模板]多项式求逆(NTT)

    题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...

  5. 洛谷 P4512 [模板] 多项式除法

    题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...

  6. 洛谷 P4238 [模板] 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...

  7. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  8. 多项式求逆元详解+模板 【洛谷P4238】多项式求逆

    概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...

  9. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  10. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

随机推荐

  1. Slim安装以及使用【转】

    最近在用backbone.js 做东西,因为牵扯到REST services 所以需要后台支持,此处选择了php.Slim 是php的一个框架. 貌似国内文章对此的介绍比较少,在安装Slim的过程中出 ...

  2. Python基础:Python数据类型及逻辑判断语句

    Python代码需要严谨的缩进 # 导包 import random # ********************输入输出***************** # 输出 print("hell ...

  3. MyCat的安装及基本使用(MySQL分库分表)

    1.Mycat的简介 1.1 数据库集群产生的背景 如今随着互联网的发展,数据的量级也是成指数的增长,从GB到TB到PB.对数据的各种操作也是愈加的困难,传统的关系性数据库已经无法满足快速查询与插入数 ...

  4. java基础之日期时间工具类

    package zy.test; import java.sql.Timestamp; import java.text.ParseException; import java.text.ParseP ...

  5. c++ 观察者模式(observer)

    观察者模式:定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新.它还有两个别名,依赖 (Dependents),发布-订阅(Publish-Subs ...

  6. Opencv Match Template(轮廓匹配)

    #include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; ...

  7. C 和 CPP 混合代码cmath编译出错

    Visual Studio会将cmath内的一些列函数报错 解决方式:项目->属性->配置属性->C/C++ ->高级->编译为->选择编译为C++代码即可

  8. Fix: The account is not authorized to log in from this station

    If you have more the one computers running Windows, then its possible to connect them using HomeGrou ...

  9. jvisualvm远程监控服务器tomcat

    1.在 {服务器tomcat路径}/bin/catalina.sh 中,的[# OS specific support.  $var _must_ be set to either true or f ...

  10. Ajax定时局部刷新

    1.局部刷新一个地方 function refreshOnTime(){ $.ajax({ //配置 }); //7秒后重复执行该函数 setInterval('refreshOnTime', 700 ...