原文:https://blog.csdn.net/aimreant/article/details/53145063

思考卷积神经网络(CNN)中各种意义

只是知道CNN是不够,我们需要对其进行解剖,继而分析不同部件存在的意义

CNN的目的

简单来说,CNN的目的是以一定的模型对事物进行特征提取,而后根据特征对该事物进行分类、识别、预测或决策等。在这个过程里,最重要的步骤在于特征提取,即如何提取到能最大程度区分事物的特征。如果提取的特征无法将不同的事物进行划分,那么该特征提取步骤将毫无意义。而实现这个伟大的模型的,是对CNN进行迭代训练。

特征

在图像中(举个例子),目标事物的特征主要体现在像素与像素之间的关系。比如说,我们能区分一张图片中有一条直线,是因为直线上的像素与直线外邻像素的区别足够大(或直线两边的像素区别足够大),以至于这“直线”能被识别出来:

除了直线外,其他特征也同理。在CNN中,大部分特征提取依赖于卷积运算。

卷积与特征提取

卷积在此其实就是内积,步骤很简单,就是根据多个一定的权重(即卷积核),对一个块的像素进行内积运算,其输出就是提取的特征之一:

选用卷积的原因

局部感知

简单来说,卷积核的大小一般小于输入图像的大小(如果等于则是全连接),因此卷积提取出的特征会更多地关注局部 —— 这很符合日常我们接触到的图像处理。而每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。

参数共享

参数共享最大的作用莫过于很大限度地减少运算量了。

多核

一般我们都不会只用一个卷积核对输入图像进行过滤,因为一个核的参数是固定的,其提取的特征也会单一化。这就有点像是我们平时如何客观看待事物,必须要从多个角度分析事物,这样才能尽可能地避免对该事物产生偏见。我们也需要多个卷积核对输入图像进行卷积。

Down-Pooling

卷积后再接上一个池化层(Pooling)简直就是绝配,能很好的聚合特征、降维来减少运算量。

多层卷积

层数越高,提取到的特征就越全局化。

池化

池化,即对一块数据进行抽样或聚合,例如选择该区域的最大值(或平均值)取代该区域:

上图的池化例子,将10 * 10的区域池化层1 * 1的区域,这样使数据的敏感度大大降低,同时也在保留数据信息的基础上降低了数据的计算复杂度。

激活函数的意义

在数学上,激活函数的作用就是将输入数据映射到0到1上(tanh是映射-1到+1上)。至于映射的原因,除了对数据进行正则化外,大概是控制数据,使其只在一定的范围内。当然也有另外细节作用,例如Sigmoid(tanh)中,能在激活的时候,更关注数据在零(或中心点)前后的细小变化,而忽略数据在极端时的变化,例如ReLU还有避免梯度消失的作用。通常,Sigmoid(tanh)多用于全连接层,而ReLU多用于卷积层。

或者我们换一个卷积核(换一种角度)来看待这个激活函数,如果我们把每一次激活动作当成一次分类,即对输入数据分成两类(0或1),那么激活函数得到的输出是在0到1的值,它可以代表着这次“分类”的归属度。如果我们把0规定为未激活,1表示激活,那么输出0.44就表示激活了44%。

而激活函数的使用却有可能带来一定的负面影响(对于训练的负面影响),激活函数可能会使我们得输入数据都激活了大半,对此我们有另外的对策 —— LRN。

LRN的催化与抑制

LRN,局部响应归一化。在神经学科中,有一个叫横向抑制(lateral inhibition)的概念,这种抑制的作用就是阻止兴奋神经元向邻近神经元传播其动作趋势,从而减少兴奋神经元的邻近神经元的激活程度。借鉴了这一生物现象(其实我们全部东西都是借鉴生物的,不是?),我们使用LRN层来对激活函数的输出数据进行横向抑制,在为激活函数收拾残局的同时,LRN还凸显了该区域的一个峰值 —— 这个峰值特征就是我们想要的特征。

特别是ReLU,它无限制的激活使得我们更需要LRN来到数据进行归一化。在大规模的数据中,我们大多情况下更看重被凸显的高频特征。因此,用LRN对数据的峰值进行催化而对其周围进行抑制,何乐不为。

IP层

在许多CNN的后部分,都存在着一个IP(Inner Product)层/内积层/fc(full connect)层/全连接层。这个全连接网络的代表性层级,其存在于CNN的意义我不得而知。在许多论文中,它替代了softmax来特征负责最终的提取,而有人也指出CNN最后可以不用IP层。

Dropout的舍弃

舍弃一直是一个伟大的哲学,生物的进化上例子比比皆是。Dropout的任务就是在训练时,通过设置阈值并与某些隐含层节点的权重对比,让特定的权重不工作 —— 在该层舍弃这些权重。Dropout的作用也很明显,除了加速运算外,就是防止过拟合了。

思考卷积神经网络(CNN)中各种意义的更多相关文章

  1. 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)

    上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...

  2. 【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理

    上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...

  3. 深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 关于卷积神经网络CNN,网络和文献中 ...

  4. 深度学习之卷积神经网络CNN及tensorflow代码实例

    深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂 ...

  5. 卷积神经网络(CNN)前向传播算法

    在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的.重点会和传统的DNN比较讨论. 1. 回顾CNN的结构 在上一 ...

  6. 卷积神经网络(CNN)反向传播算法

    在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度 ...

  7. 卷积神经网络CNN总结

    从神经网络到卷积神经网络(CNN)我们知道神经网络的结构是这样的: 那卷积神经网络跟它是什么关系呢?其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进.比如下图 ...

  8. 深度学习之卷积神经网络(CNN)详解与代码实现(二)

    用Tensorflow实现卷积神经网络(CNN) 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10737065. ...

  9. 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...

随机推荐

  1. 【紫书】 Unix ls UVA - 400 模拟

    题意:中文版https://vjudge.net/problem/UVA-400#author=Zsc1615925460 题解:首先读取字符,维护一个最长字符串长度M,再排序. 对于输出,写一个pr ...

  2. LightOj 1104 - Birthday Paradox(生日悖论概率)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1104 题意:一年365天,在有23个人的情况下,这23个人中有两个人生日相同的概率是大 ...

  3. POJ3468 a simple problem with integers 分块

    题解:分块 解题报告: 是个板子题呢qwq 没什么可说的,加深了对分块的理解趴还是 毕竟这么简单的板子题我居然死去活来WA了半天才调出来,,,哭了QAQ 还是说下我错在了哪几个地方(...是的,有好几 ...

  4. 从0开始做一个的Vue图片/ 文件选择(上传)组件[基础向]

    原文:http://blog.csdn.net/sinat_17775997/article/details/58585142 之前用Vue做了一个基础的组件 vue-img-inputer ,下面就 ...

  5. CentOS7 firewall防火墙配置笔记

    开启端口 # firewall-cmd --zone=public --add-port=/tcp --permanent 命令含义:         --zone #作用域         --ad ...

  6. oracle(十)临时表

    1.临时表的特点 (1)多用户操作的独立性:对于使用同一张临时表的不同用户,oracle都会分配一个独立的 Temp Segment,这样就避免了多个用户在对同一张临时表操作时 发生交叉,从而保证了多 ...

  7. mysql 权限管理 revoke 回收权限 命令

    回收所有库,所有表的所有权限 revoke all on *.* from 针对mike的账号 回收 所有库,所有表的select权限 mysql> revoke select on *.* f ...

  8. 跨平台的移动应用开发框架-Sencha Touch

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/tommychen1228/article/details/32959529 近期决定转以日常技术类文 ...

  9. auto类型-现代C++新特性

    auto类型 C++11中引入的auto主要用于类型推导.auto在C++98中"存储类型指示符"的语义,由于使用极少且多余,该语义从C++11开始被删除. auto类型推导用于从 ...

  10. Appium-Python-Client安装

    官网是这个:https://pypi.org/project/Appium-Python-Client/#files 下载下来后是这样的文件不知道怎么安装: 不用下载,直接这样就可以 了~~ 安装后导 ...