Natural Language Processing Tasks and Selected References

I've been working on several natural language processing tasks for a long time. One day, I felt like drawing a map of the NLP field where I earn a living. I'm sure I'm not the only person who wants to see at a glance which tasks are in NLP.

I did my best to cover as many as possible tasks in NLP, but admittedly this is far from exhaustive purely due to my lack of knowledge. And selected references are biased towards recent deep learning accomplishments. I expect these serve as a starting point when you're about to dig into the task. I'll keep updating this repo myself, but what I really hope is you collaborate on this work. Don't hesitate to send me a pull request!

Oct. 13, 2017.

by Kyubyong

Reviewed and updated by YJ Choe on Oct. 18, 2017.

Anaphora Resolution

Automated Essay Scoring

Automatic Speech Recognition

Automatic Summarisation

Coreference Resolution

Entity Linking

Grammatical Error Correction

Grapheme To Phoneme Conversion

Humor and Sarcasm Detection

Language Grounding

Language Guessing

Language Identification

Language Modeling

Language Recognition

Lemmatisation

Lip-reading

Machine Translation

Morphological Inflection Generation

Named Entity Disambiguation

Named Entity Recognition

Paraphrase Detection

Paraphrase Generation

Parsing

Part-of-speech Tagging

Pinyin-To-Chinese Conversion

Question Answering

Relationship Extraction

Semantic Role Labeling

Sentence Boundary Disambiguation

Sentiment Analysis

Singing Voice Synthesis

Social Science Applications

Source Separation

Speaker Authentication

Speaker Diarisation

Speaker Recognition

Speech Reading

Speech Recognition

Speech Segmentation

Speech Synthesis

Speech Enhancement

Speech-To-Text

Spoken Term Detection

Stemming

Term Extraction

Text Similarity

Text Simplification

Text-To-Speech

Textual Entailment

Transliteration

Voice Conversion

Voice Recognition

Word Embeddings

Word Prediction

Word Segmentation

Word Sense Disambiguation

— Language Models, Segmentation
— Morphological Analysis, POS Tagging and Sequence Labeling
— Syntactic and Semantic Parsing
— Lexical and Compositional Semantics
— Discourse and Coreference
— Dialogue and Interactive Systems
— Narrative Understanding and Commonsense Reasoning
— Spoken Language Processing
— Text Mining
— Sentiment Analysis and Opinion Mining
— Information Retrieval, Question Answering
— Information Extraction
— Summarization
— Natural Language Generation
— Machine Translation
— Multilinguality and Cross-linguality
— Linguistic Theories and Resources
— Computational Psycholinguistics
— Multimodal and Grounded Language Processing
— Machine Learning for NLP
— Web, Social Media and Computational Social Science
— Ethics and Fairness in NLP
— Other NLP Applications

[转]NLP Tasks的更多相关文章

  1. NLP里面的一些基本概念

    1,corpus 语料库 a computer-readable collection of text or speech 2,utterance 发音 比如下面一句话:I do uh main- m ...

  2. [转] Understanding Convolutional Neural Networks for NLP

    http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 讲CNN以及其在NLP的应用,非常 ...

  3. Understanding Convolutional Neural Networks for NLP

    When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs ...

  4. [NLP] cs224n-2019 Assignment 1 Exploring Word Vectors

      CS224N Assignment 1: Exploring Word Vectors (25 Points)¶ Welcome to CS224n! Before you start, make ...

  5. CNN for NLP

    卷积神经网络在自然语言处理任务中的应用.参考链接:Understanding Convolutional Neural Networks for NLP(2015.11) Instead of ima ...

  6. 最佳实践:深度学习用于自然语言处理(Deep Learning for NLP Best Practices) - 阅读笔记

    https://www.wxnmh.com/thread-1528249.htm https://www.wxnmh.com/thread-1528251.htm https://www.wxnmh. ...

  7. 基于OpenSeq2Seq的NLP与语音识别混合精度训练

    基于OpenSeq2Seq的NLP与语音识别混合精度训练 Mixed Precision Training for NLP and Speech Recognition with OpenSeq2Se ...

  8. 常用python机器学习库总结

    开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处 ...

  9. (转) The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...

随机推荐

  1. [VS2010搭建汇编开发环境win32和x64]

    场景: 1. 虽然使用MASM32也可以编译运行汇编程序,但是既然装了VS2010,它也能支持编译运行汇编吧.不然微软的开发人员难道还不用vs写汇编程序了? http://www.masm32.com ...

  2. svn“Previous operation has not finished; run 'cleanup' if it was interrupted“报错的解决方法

    今天碰到了个郁闷的问题,svn执行clean up命令时报错“Previous operation has not finished; run 'cleanup' if it was interrup ...

  3. LAMP架构之PHP-FPM 服务器

    PHP简介 安装PHP 解决依赖关系 # 请配置好yum源(系统安装源及epel源)后执行如下命令: yum -y groupinstall "Desktop Platform Develo ...

  4. 【Scala】Scala-Map使用方法

    Scala-Map使用方法 scala map put_百度搜索 Scala中的Map使用例子 - CSDN博客 How to populate java.util.HashMap on the fl ...

  5. Centos设置开机启动Apache和Mysql[总结]

    1.前言 最近学习搭建wordpress,需要用到apahce和mysql.我是下载源代码进行安装的,安装在/url/local目录下,每次开机都需要手动启动,有点麻烦.如是想设置开机启动,从网上查了 ...

  6. Eclipse中GitLab的配置和使用入门

    一.Eclipse中配置GitLab的前提条件 1.1:安装Git客户端 去官网https://git-scm.com/downloads下载合适的版本即可,一般开发环境是windows的就下载win ...

  7. POJ 3009:Curling 2.0 推箱子

    Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14090   Accepted: 5887 Desc ...

  8. 造轮子 | 怎样设计一个面向协议的 iOS 网络请求库

    近期开源了一个面向协议设计的网络请求库 MBNetwork,基于 Alamofire 和 ObjectMapper 实现,目的是简化业务层的网络请求操作. 须要干些啥 对于大部分 App 而言,业务层 ...

  9. 微软BI 之SSRS 系列 - 如何实现报表标签的本地化 - 中文和英文的互换

    SSRS 中并没有直接提供本地化的配置方式,因此在 SSRS 中实现本地化,比如有英文标题还有可选的中文标题,就需要通过其它的方式来解决. 比如默认是这样的英文标题 - 但是本地中方用户可能比较喜欢看 ...

  10. vCenter orchestrator使用范例