Natural Language Processing Tasks and Selected References

I've been working on several natural language processing tasks for a long time. One day, I felt like drawing a map of the NLP field where I earn a living. I'm sure I'm not the only person who wants to see at a glance which tasks are in NLP.

I did my best to cover as many as possible tasks in NLP, but admittedly this is far from exhaustive purely due to my lack of knowledge. And selected references are biased towards recent deep learning accomplishments. I expect these serve as a starting point when you're about to dig into the task. I'll keep updating this repo myself, but what I really hope is you collaborate on this work. Don't hesitate to send me a pull request!

Oct. 13, 2017.

by Kyubyong

Reviewed and updated by YJ Choe on Oct. 18, 2017.

Anaphora Resolution

Automated Essay Scoring

Automatic Speech Recognition

Automatic Summarisation

Coreference Resolution

Entity Linking

Grammatical Error Correction

Grapheme To Phoneme Conversion

Humor and Sarcasm Detection

Language Grounding

Language Guessing

Language Identification

Language Modeling

Language Recognition

Lemmatisation

Lip-reading

Machine Translation

Morphological Inflection Generation

Named Entity Disambiguation

Named Entity Recognition

Paraphrase Detection

Paraphrase Generation

Parsing

Part-of-speech Tagging

Pinyin-To-Chinese Conversion

Question Answering

Relationship Extraction

Semantic Role Labeling

Sentence Boundary Disambiguation

Sentiment Analysis

Singing Voice Synthesis

Social Science Applications

Source Separation

Speaker Authentication

Speaker Diarisation

Speaker Recognition

Speech Reading

Speech Recognition

Speech Segmentation

Speech Synthesis

Speech Enhancement

Speech-To-Text

Spoken Term Detection

Stemming

Term Extraction

Text Similarity

Text Simplification

Text-To-Speech

Textual Entailment

Transliteration

Voice Conversion

Voice Recognition

Word Embeddings

Word Prediction

Word Segmentation

Word Sense Disambiguation

— Language Models, Segmentation
— Morphological Analysis, POS Tagging and Sequence Labeling
— Syntactic and Semantic Parsing
— Lexical and Compositional Semantics
— Discourse and Coreference
— Dialogue and Interactive Systems
— Narrative Understanding and Commonsense Reasoning
— Spoken Language Processing
— Text Mining
— Sentiment Analysis and Opinion Mining
— Information Retrieval, Question Answering
— Information Extraction
— Summarization
— Natural Language Generation
— Machine Translation
— Multilinguality and Cross-linguality
— Linguistic Theories and Resources
— Computational Psycholinguistics
— Multimodal and Grounded Language Processing
— Machine Learning for NLP
— Web, Social Media and Computational Social Science
— Ethics and Fairness in NLP
— Other NLP Applications

[转]NLP Tasks的更多相关文章

  1. NLP里面的一些基本概念

    1,corpus 语料库 a computer-readable collection of text or speech 2,utterance 发音 比如下面一句话:I do uh main- m ...

  2. [转] Understanding Convolutional Neural Networks for NLP

    http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 讲CNN以及其在NLP的应用,非常 ...

  3. Understanding Convolutional Neural Networks for NLP

    When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs ...

  4. [NLP] cs224n-2019 Assignment 1 Exploring Word Vectors

      CS224N Assignment 1: Exploring Word Vectors (25 Points)¶ Welcome to CS224n! Before you start, make ...

  5. CNN for NLP

    卷积神经网络在自然语言处理任务中的应用.参考链接:Understanding Convolutional Neural Networks for NLP(2015.11) Instead of ima ...

  6. 最佳实践:深度学习用于自然语言处理(Deep Learning for NLP Best Practices) - 阅读笔记

    https://www.wxnmh.com/thread-1528249.htm https://www.wxnmh.com/thread-1528251.htm https://www.wxnmh. ...

  7. 基于OpenSeq2Seq的NLP与语音识别混合精度训练

    基于OpenSeq2Seq的NLP与语音识别混合精度训练 Mixed Precision Training for NLP and Speech Recognition with OpenSeq2Se ...

  8. 常用python机器学习库总结

    开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处 ...

  9. (转) The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...

随机推荐

  1. Binary Tree Level Order Traversal II leetcode java

    题目: Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from ...

  2. 【Javascript设计模式1】-单例模式

    <parctical common lisp>的作者曾说,如果你需要一种模式,那一定是哪里出了问题.他所说的问题是指因为语言的天生缺陷,不得不去寻求和总结一种通用的解决方案. 不管是弱类型 ...

  3. scikit-learn的GBDT工具进行特征选取。

    http://blog.csdn.net/w5310335/article/details/48972587 使用GBDT选取特征 2015-03-31 本文介绍如何使用scikit-learn的GB ...

  4. AdMaster技术副总裁谈Hadoop、营销数据、Python和挖掘平台

    http://www.infoq.com/cn/news/2014/09/admaster-hadoop 卢亿雷是现任AdMaster技术副总裁,曾在联想研究院.百度基础架构部.Carbonite C ...

  5. Spark Structured Streaming:将数据落地按照数据字段进行分区方案

    方案一(使用ForeachWriter Sink方式): val query = wordCounts.writeStream.trigger(ProcessingTime(5.seconds)) . ...

  6. Eclipse技术: 项目文件中过滤.o文件

    1. 右建项目 -> Properties. 2. 增加过滤规则

  7. (转)Unity3D 游戏贴图(法线贴图,漫反射贴图,高光贴图)

    原帖网址http://www.u3dpro.com/read.php?tid=207  感谢jdk900网友的辛苦编写 我们都知道,一个三维场景的画面的好坏,百分之四十取决于模型,百分之六十取决于贴图 ...

  8. jQuery对象

    $(document).ready(function(){ //第二种获取方法,通过标签的名<h2>Dom来获取 var h1 = document.getElementsByTagNam ...

  9. 一次性解决Intellij IDEA maven 自动跳到1.5的JDK

    说明:文章学习自:https://blog.csdn.net/Zereao/article/details/77427989 一.找到Setting.xml文件 打开setting.xml 说明,该文 ...

  10. Linux中磁盘分区、格式化、挂载等管理

    1. 添加磁盘,查看磁盘状况 [root@db1 /]# fdisk -l Disk /dev/sda: bytes heads, sectors/track, cylinders Units = c ...