Natural Language Processing Tasks and Selected References

I've been working on several natural language processing tasks for a long time. One day, I felt like drawing a map of the NLP field where I earn a living. I'm sure I'm not the only person who wants to see at a glance which tasks are in NLP.

I did my best to cover as many as possible tasks in NLP, but admittedly this is far from exhaustive purely due to my lack of knowledge. And selected references are biased towards recent deep learning accomplishments. I expect these serve as a starting point when you're about to dig into the task. I'll keep updating this repo myself, but what I really hope is you collaborate on this work. Don't hesitate to send me a pull request!

Oct. 13, 2017.

by Kyubyong

Reviewed and updated by YJ Choe on Oct. 18, 2017.

Anaphora Resolution

Automated Essay Scoring

Automatic Speech Recognition

Automatic Summarisation

Coreference Resolution

Entity Linking

Grammatical Error Correction

Grapheme To Phoneme Conversion

Humor and Sarcasm Detection

Language Grounding

Language Guessing

Language Identification

Language Modeling

Language Recognition

Lemmatisation

Lip-reading

Machine Translation

Morphological Inflection Generation

Named Entity Disambiguation

Named Entity Recognition

Paraphrase Detection

Paraphrase Generation

Parsing

Part-of-speech Tagging

Pinyin-To-Chinese Conversion

Question Answering

Relationship Extraction

Semantic Role Labeling

Sentence Boundary Disambiguation

Sentiment Analysis

Singing Voice Synthesis

Social Science Applications

Source Separation

Speaker Authentication

Speaker Diarisation

Speaker Recognition

Speech Reading

Speech Recognition

Speech Segmentation

Speech Synthesis

Speech Enhancement

Speech-To-Text

Spoken Term Detection

Stemming

Term Extraction

Text Similarity

Text Simplification

Text-To-Speech

Textual Entailment

Transliteration

Voice Conversion

Voice Recognition

Word Embeddings

Word Prediction

Word Segmentation

Word Sense Disambiguation

— Language Models, Segmentation
— Morphological Analysis, POS Tagging and Sequence Labeling
— Syntactic and Semantic Parsing
— Lexical and Compositional Semantics
— Discourse and Coreference
— Dialogue and Interactive Systems
— Narrative Understanding and Commonsense Reasoning
— Spoken Language Processing
— Text Mining
— Sentiment Analysis and Opinion Mining
— Information Retrieval, Question Answering
— Information Extraction
— Summarization
— Natural Language Generation
— Machine Translation
— Multilinguality and Cross-linguality
— Linguistic Theories and Resources
— Computational Psycholinguistics
— Multimodal and Grounded Language Processing
— Machine Learning for NLP
— Web, Social Media and Computational Social Science
— Ethics and Fairness in NLP
— Other NLP Applications

[转]NLP Tasks的更多相关文章

  1. NLP里面的一些基本概念

    1,corpus 语料库 a computer-readable collection of text or speech 2,utterance 发音 比如下面一句话:I do uh main- m ...

  2. [转] Understanding Convolutional Neural Networks for NLP

    http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 讲CNN以及其在NLP的应用,非常 ...

  3. Understanding Convolutional Neural Networks for NLP

    When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs ...

  4. [NLP] cs224n-2019 Assignment 1 Exploring Word Vectors

      CS224N Assignment 1: Exploring Word Vectors (25 Points)¶ Welcome to CS224n! Before you start, make ...

  5. CNN for NLP

    卷积神经网络在自然语言处理任务中的应用.参考链接:Understanding Convolutional Neural Networks for NLP(2015.11) Instead of ima ...

  6. 最佳实践:深度学习用于自然语言处理(Deep Learning for NLP Best Practices) - 阅读笔记

    https://www.wxnmh.com/thread-1528249.htm https://www.wxnmh.com/thread-1528251.htm https://www.wxnmh. ...

  7. 基于OpenSeq2Seq的NLP与语音识别混合精度训练

    基于OpenSeq2Seq的NLP与语音识别混合精度训练 Mixed Precision Training for NLP and Speech Recognition with OpenSeq2Se ...

  8. 常用python机器学习库总结

    开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处 ...

  9. (转) The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...

随机推荐

  1. GPUImage简单滤镜使用(一)

    今天来学习一下一个简单滤镜使用的流程,通过调节亮度滤镜来了解.先将GPUImage库导入到项目中,引入头文件"GPUImage.h"   一.创建亮度滤镜对象    GPUImag ...

  2. .Net Framework System.Collections 集合类

    本文内容 集合类 性能 最近复习了一下集合,C# 关于集合的类蛮多,但我除了 List 那几个经常用之外,其他的用得还真不多(只在小范围使用),但其实,每个集合类都各有自己适用的场景,功能也很强大.尤 ...

  3. Android 自定义 ListView 上下拉动“刷新最新”和“加载更多”歌曲列表

    本文内容 环境 测试数据 项目结构 演示 参考资料 本文演示,上拉刷新最新的歌曲列表,和下拉加载更多的歌曲列表.所谓"刷新最新"和"加载更多"是指日期.演示代码 ...

  4. 使用jstl报错:According to TLD or attribute directive in tag file, attribute value does not accept any expressions

    使用jstl报错:According to TLD or attribute directive in tag file, attribute value does not accept any ex ...

  5. Hbase master启动报错:Failed construction of Master: class org.apache.hadoop.hbase.master.HMaster Caused by: java.net.UnknownHostException:

    Hbase master启动报错: java.lang.RuntimeException: Failed construction of Master: class org.apache.hadoop ...

  6. SQL Server Window Function 窗体函数读书笔记一 - SQL Windowing

    SQL Server 窗体函数主要用来处理由 OVER 子句定义的行集, 主要用来分析和处理 Running totals Moving averages Gaps and islands 先看一个简 ...

  7. ubuntu iptables设置【转】

    root@qustdjx-K42JZ:/home/qustdjx# iptables -L -nChain INPUT (policy ACCEPT)target     prot opt sourc ...

  8. JAVA设计模式——第 5 章 工厂方法模式【Factory Method Pattern】(转)

    女娲补天的故事大家都听说过吧,今天不说这个,说女娲创造人的故事,可不是“造人”的工作,这个词被现代人滥用了.这个故事是说,女娲在补了天后,下到凡间一看,哇塞,风景太优美了,天空是湛蓝的,水是清澈的,空 ...

  9. Spring+MyBatis纯注解零XML整合(4)

    不得不说,利用XML作为配置文件是一个非常好的想法,它可以轻松地实现配置集中化,而且修改之后无需再次编译.然而,由于大多数情况下开发者基本都会拿到程序的源码,加之对于各种XML配置文件一般情况下也只有 ...

  10. sqlAlchemy学习 001

    研究学习主题 sqlAlchemy架构图 测试练习代码编写 连接数据库 看代码 db_config = { 'host': 'xxx.xxx.xxx.xx', 'user': 'root', 'pas ...