1. DNN神经网络的前向传播(FeedForward)
1. DNN神经网络的前向传播(FeedForward)
2. DNN神经网络的反向更新(BP)
3. DNN神经网络的正则化
1. 前言
神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。但是,Rosenblatt的单层感知机有一个严重得不能再严重的问题,即它对稍复杂一些的函数都无能为力。
随着数学的发展,这个缺点直到上世纪八十年代才被Rumelhart、Williams、Hinton、LeCun等人(反正就是一票大牛)发明的多层感知机(multilayer perceptron)克服。多层感知机,顾名思义,就是有多个隐含层的感知机。
2. 感知机原理
我之前博文的感知机原理已经详细的介绍了感知机,现在我们进行一个简单的回顾。
先看下人工神经元的结构:
输出是线性的
\[
z=\sum\limits_{i=1}^mw_ix_i + b
\]
因为感知机是二分类算法,所以会套一个函数:
\[
sign(z)= \begin{cases} -1& {z<0}\\ 1& {z\geq 0} \end{cases}
\]
在神经网络中,套在线性变换外面的这个函数称作激活函数,激活函数可以是线性的\(f(x) = x\),或者是非线性的,例如\(sigmoid,tanh,relu\)等常用的。
3. 神经网络原理
神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具。典型的神经网络具有以下三个部分:
- 结构 (Architecture)
结构指定了网络中的变量和它们的拓扑关系。例如,神经网络中的变量可以是神经元连接的权重(weights)和神经元的激励值(activities of the neurons)。 - 激励函数(Activity Rule) 大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。一般激励函数依赖于网络中的权重(即该网络的参数)。
- 学习规则(Learning Rule)学习规则指定了网络中的权重如何随着时间推进而调整。这一般被看做是一种长时间尺度的动力学规则。一般情况下,学习规则依赖于神经元的激励值。它也可能依赖于监督者提供的目标值和当前权重的值。
神经网络则在感知机的模型上做了扩展,总结下主要有三点:
- 加入了隐藏层,隐藏层可以有多层,增强模型的表达能力,如下图实例,当然增加了这么多隐藏层模型的复杂度也增加了好多。
- 输出层的神经元也可以不止一个输出,可以有多个输出,这样模型可以灵活的应用于分类回归,以及其他的机器学习领域比如降维和聚类等。多个神经元输出的输出层对应的一个实例如下图,输出层现在有4个神经元了。
- 对激活函数做扩展,感知机的激活函数是\(sign(z)\),虽然简单但是处理能力有限,因此神经网络中一般使用的其他的激活函数,比如我们在逻辑回归里面使用过的\(Sigmoid\)函数,即:
4. DNN的网络结构
DNN我们可以理解为多隐层的神经网络,此外,它有时也叫多层感知机(Multi-Layer perceptron,MLP),它内部的神经网络层分为三类,输入层,隐藏层和输出层。
层与层之间是全连接的,也就是说,第\(i\)层的任意一个神经元一定与第\(i+1\)层的任意一个神经元相连。虽然DNN看起来很复杂,但是从小的局部模型来说,还是和感知机一样,即一个线性关系\(z=\sum{w_ix_i}+b\)加上一个激活函数\(a=\sigma(z)\)。
5. DNN前向传播过程
DNN的前向传播算法不算太难。所谓的DNN的前向传播算法也就是利用我们的若干个权重系数矩阵\(W\),偏倚向量\(b\)来和输入值向量\(x\)进行一系列线性运算和激活运算,从输入层开始,一层层的向后计算,一直到运算到输出层,得到输出结果为值。
输入: 总层数\(L\),当前层是\(l\),当前层隐藏层和输出层对应的矩阵\(W^l\),偏倚向量\(b^l\),输入值向量\(a^{l-1}\),神经元个数\(dim^l\)
输出:输出层的输出\(a^L\)
- 初始化\(a^0=input\)
- \(for\;\;l=1\;\;to\;\;L-1\), 计算:
\[
a^l=\sigma(z^l)=\sigma(W^la^{l-1}+b^l)
\]
其中每个变量的维度是\(W^l=[dim^l,dim^{l-1}]\),\(a^{l-1}=[dim^{l-1}, batch\_size]\),\(b^l=[dim^l,1]\),\(z^l=[dim^l,batch\_size]\),\(a^l=[dim^l,batch\_size]\)
- 最后的结果即为输出\(a^L\)。
6. 总结
我们现在了解了DNN的前向传播的过程,但是我们会有疑问,DNN中如何更新这么多的\(W,b\)呢,当然还是运用神奇的梯度下降法来更新。在神经网络中运用梯度下降法的过程就是反向更新。
1. DNN神经网络的前向传播(FeedForward)的更多相关文章
- 《神经网络的梯度推导与代码验证》之FNN(DNN)的前向传播和反向推导
在<神经网络的梯度推导与代码验证>之数学基础篇:矩阵微分与求导中,我们总结了一些用于推导神经网络反向梯度求导的重要的数学技巧.此外,通过一个简单的demo,我们初步了解了使用矩阵求导来批量 ...
- Tensorflow实现神经网络的前向传播
我们构想有一个神经网络,输入为两个input,中间有一个hidden layer,这个hiddenlayer当中有三个神经元,最后有一个output. 图例如下: 在实现这个神经网络的前向传播之前,我 ...
- 卷积神经网络(CNN)前向传播算法
在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的.重点会和传统的DNN比较讨论. 1. 回顾CNN的结构 在上一 ...
- 神经网络,前向传播FP和反向传播BP
1 神经网络 神经网络就是将许多个单一“神经元”联结在一起,这样,一个“神经元”的输出就可以是另一个“神经元”的输入.例如,下图就是一个简单的神经网络: 我们使用圆圈来表示神经网络的输入,标上“”的圆 ...
- 吴裕雄 python 神经网络——TensorFlow 三层简单神经网络的前向传播算法
import tensorflow as tf w1= tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1)) w2= tf.Variable( ...
- 3. DNN神经网络的正则化
1. DNN神经网络的前向传播(FeedForward) 2. DNN神经网络的反向更新(BP) 3. DNN神经网络的正则化 1. 前言 和普通的机器学习算法一样,DNN也会遇到过拟合的问题,需要考 ...
- 2. DNN神经网络的反向更新(BP)
1. DNN神经网络的前向传播(FeedForward) 2. DNN神经网络的反向更新(BP) 3. DNN神经网络的正则化 1. 前言 DNN前向传播介绍了DNN的网络是如何的从前向后的把数据传递 ...
- 《神经网络的梯度推导与代码验证》之CNN的前向传播和反向梯度推导
在FNN(DNN)的前向传播,反向梯度推导以及代码验证中,我们不仅总结了FNN(DNN)这种神经网络结构的前向传播和反向梯度求导公式,还通过tensorflow的自动求微分工具验证了其准确性.在本篇章 ...
- 实现属于自己的TensorFlow(一) - 计算图与前向传播
前段时间因为课题需要使用了一段时间TensorFlow,感觉这种框架很有意思,除了可以搭建复杂的神经网络,也可以优化其他自己需要的计算模型,所以一直想自己学习一下写一个类似的图计算框架.前几天组会开完 ...
随机推荐
- ActiveX IE保护模式下的低权限操作路径及Windows操作系统特殊路径
参考理解IE保护模式:https://blog.csdn.net/xt_xiaotian/article/details/5336809 文件帮助类: public class FileHelp { ...
- Xcode 各版本简介
1.Xcode 验证 在终端输入 spctl 命令,并带上安装的 Xcode 的路径 $ spctl --assess --verbose /Applications/Xcode.app 之后会看到类 ...
- 下载远程(第三方服务器)文件、图片,保存到本地(服务器)的方法、保存抓取远程文件、图片 将图片的二进制字节字符串在HTML页面以图片形式输出 asp.net 文件 操作方法
下载远程(第三方服务器)文件.图片,保存到本地(服务器)的方法.保存抓取远程文件.图片 将一台服务器的文件.图片,保存(下载)到另外一台服务器进行保存的方法: 1 #region 图片下载 2 3 ...
- ORA-14404: partitioned table contains partitions in a different tablespace
SQL> drop tablespace nn_data including contents and datafiles; drop tablespace nn_data including ...
- 2014百度之星第一题Energy Conversion
Energy Conversion Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- git server 搭建指南
搭建git服务器的经验总结 一: Server端的设置 1. 安装 git, git-core 2. 安装 ssh-server. (代码上传通道) 3. 创建git 用户 指定其目录 和所在组 4. ...
- STM32定时器T2纯软件仿真时间准确,JTAG在线调试查看时间不准的问题
通过查看Sec的值和上次中断的差值计算的,虽然这个值是不准的 ,但实际上时间是准的, 原因如下:stm32在调试模式下虽然进断点之后程序停止了,但定时器的时钟还在走,计数器还在计数,若要在产生断点时计 ...
- 【转载】web网站css,js更新后客户浏览器缓存问题,需要刷新才能正常展示的解决办法
原文:http://blog.csdn.net/csdn100861/article/details/50684438 问题描述 部署到服务器后访问发现页面展示不正常,但是刷新之后就会展示正常. 问题 ...
- Android NDK r9的配置与使用
Android NDK 配置: 网上有很多教程,但大部分是旧版本的内容,最新版本的已经改变,为了让大家少走弯路,在这里针对r9的配置进行记录分享. 要玩NDK,你或多或少要用到以下一些东西,所以先做一 ...
- keras 类似问题解决:model找不到,或者无法下载
Applications Keras Applications are deep learning models that are made available alongside pre-train ...