1. DNN神经网络的前向传播(FeedForward)

2. DNN神经网络的反向更新(BP)

3. DNN神经网络的正则化

1. 前言

神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。但是,Rosenblatt的单层感知机有一个严重得不能再严重的问题,即它对稍复杂一些的函数都无能为力。

随着数学的发展,这个缺点直到上世纪八十年代才被Rumelhart、Williams、Hinton、LeCun等人(反正就是一票大牛)发明的多层感知机(multilayer perceptron)克服。多层感知机,顾名思义,就是有多个隐含层的感知机。

2. 感知机原理

我之前博文的感知机原理已经详细的介绍了感知机,现在我们进行一个简单的回顾。

先看下人工神经元的结构:

输出是线性的

\[
z=\sum\limits_{i=1}^mw_ix_i + b
\]

因为感知机是二分类算法,所以会套一个函数:

\[
sign(z)= \begin{cases} -1& {z<0}\\ 1& {z\geq 0} \end{cases}
\]

在神经网络中,套在线性变换外面的这个函数称作激活函数,激活函数可以是线性的\(f(x) = x\),或者是非线性的,例如\(sigmoid,tanh,relu\)等常用的。

3. 神经网络原理

神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具。典型的神经网络具有以下三个部分:

  1. 结构 (Architecture)
    结构指定了网络中的变量和它们的拓扑关系。例如,神经网络中的变量可以是神经元连接的权重(weights)和神经元的激励值(activities of the neurons)。
  2. 激励函数(Activity Rule) 大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。一般激励函数依赖于网络中的权重(即该网络的参数)。
  3. 学习规则(Learning Rule)学习规则指定了网络中的权重如何随着时间推进而调整。这一般被看做是一种长时间尺度的动力学规则。一般情况下,学习规则依赖于神经元的激励值。它也可能依赖于监督者提供的目标值和当前权重的值。

神经网络则在感知机的模型上做了扩展,总结下主要有三点:

  • 加入了隐藏层,隐藏层可以有多层,增强模型的表达能力,如下图实例,当然增加了这么多隐藏层模型的复杂度也增加了好多。

  • 输出层的神经元也可以不止一个输出,可以有多个输出,这样模型可以灵活的应用于分类回归,以及其他的机器学习领域比如降维和聚类等。多个神经元输出的输出层对应的一个实例如下图,输出层现在有4个神经元了。

  • 激活函数做扩展,感知机的激活函数是\(sign(z)\),虽然简单但是处理能力有限,因此神经网络中一般使用的其他的激活函数,比如我们在逻辑回归里面使用过的\(Sigmoid\)函数,即:

4. DNN的网络结构

DNN我们可以理解为多隐层的神经网络,此外,它有时也叫多层感知机(Multi-Layer perceptron,MLP),它内部的神经网络层分为三类,输入层,隐藏层和输出层。

层与层之间是全连接的,也就是说,第\(i\)层的任意一个神经元一定与第\(i+1\)层的任意一个神经元相连。虽然DNN看起来很复杂,但是从小的局部模型来说,还是和感知机一样,即一个线性关系\(z=\sum{w_ix_i}+b\)加上一个激活函数\(a=\sigma(z)\)。

5. DNN前向传播过程

DNN的前向传播算法不算太难。所谓的DNN的前向传播算法也就是利用我们的若干个权重系数矩阵\(W\),偏倚向量\(b\)来和输入值向量\(x\)进行一系列线性运算和激活运算,从输入层开始,一层层的向后计算,一直到运算到输出层,得到输出结果为值。

输入: 总层数\(L\),当前层是\(l\),当前层隐藏层和输出层对应的矩阵\(W^l\),偏倚向量\(b^l\),输入值向量\(a^{l-1}\),神经元个数\(dim^l\)

输出:输出层的输出\(a^L\)

  1. 初始化\(a^0=input\)
  2. \(for\;\;l=1\;\;to\;\;L-1\), 计算:

\[
a^l=\sigma(z^l)=\sigma(W^la^{l-1}+b^l)
\]
其中每个变量的维度是\(W^l=[dim^l,dim^{l-1}]\),\(a^{l-1}=[dim^{l-1}, batch\_size]\),\(b^l=[dim^l,1]\),\(z^l=[dim^l,batch\_size]\),\(a^l=[dim^l,batch\_size]\)

  1. 最后的结果即为输出\(a^L\)。

6. 总结

我们现在了解了DNN的前向传播的过程,但是我们会有疑问,DNN中如何更新这么多的\(W,b\)呢,当然还是运用神奇的梯度下降法来更新。在神经网络中运用梯度下降法的过程就是反向更新

1. DNN神经网络的前向传播(FeedForward)的更多相关文章

  1. 《神经网络的梯度推导与代码验证》之FNN(DNN)的前向传播和反向推导

    在<神经网络的梯度推导与代码验证>之数学基础篇:矩阵微分与求导中,我们总结了一些用于推导神经网络反向梯度求导的重要的数学技巧.此外,通过一个简单的demo,我们初步了解了使用矩阵求导来批量 ...

  2. Tensorflow实现神经网络的前向传播

    我们构想有一个神经网络,输入为两个input,中间有一个hidden layer,这个hiddenlayer当中有三个神经元,最后有一个output. 图例如下: 在实现这个神经网络的前向传播之前,我 ...

  3. 卷积神经网络(CNN)前向传播算法

    在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的.重点会和传统的DNN比较讨论. 1. 回顾CNN的结构 在上一 ...

  4. 神经网络,前向传播FP和反向传播BP

    1 神经网络 神经网络就是将许多个单一“神经元”联结在一起,这样,一个“神经元”的输出就可以是另一个“神经元”的输入.例如,下图就是一个简单的神经网络: 我们使用圆圈来表示神经网络的输入,标上“”的圆 ...

  5. 吴裕雄 python 神经网络——TensorFlow 三层简单神经网络的前向传播算法

    import tensorflow as tf w1= tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1)) w2= tf.Variable( ...

  6. 3. DNN神经网络的正则化

    1. DNN神经网络的前向传播(FeedForward) 2. DNN神经网络的反向更新(BP) 3. DNN神经网络的正则化 1. 前言 和普通的机器学习算法一样,DNN也会遇到过拟合的问题,需要考 ...

  7. 2. DNN神经网络的反向更新(BP)

    1. DNN神经网络的前向传播(FeedForward) 2. DNN神经网络的反向更新(BP) 3. DNN神经网络的正则化 1. 前言 DNN前向传播介绍了DNN的网络是如何的从前向后的把数据传递 ...

  8. 《神经网络的梯度推导与代码验证》之CNN的前向传播和反向梯度推导

    在FNN(DNN)的前向传播,反向梯度推导以及代码验证中,我们不仅总结了FNN(DNN)这种神经网络结构的前向传播和反向梯度求导公式,还通过tensorflow的自动求微分工具验证了其准确性.在本篇章 ...

  9. 实现属于自己的TensorFlow(一) - 计算图与前向传播

    前段时间因为课题需要使用了一段时间TensorFlow,感觉这种框架很有意思,除了可以搭建复杂的神经网络,也可以优化其他自己需要的计算模型,所以一直想自己学习一下写一个类似的图计算框架.前几天组会开完 ...

随机推荐

  1. openstack neutron 二/三层网络实现

    引用声明:https://zhangchenchen.github.io/2017/02/12/neutron-layer2-3-realization-discovry/ 一.概述 Neutron是 ...

  2. js验证身份证类

    var idCardNoUtil = { provinceAndCitys: {11:"北京",12:"天津",13:"河北",14:&qu ...

  3. 【javascript】javascript常用函数大全

    javascript函数一共可分为五类:   •常规函数   •数组函数   •日期函数   •数学函数   •字符串函数   1.常规函数   javascript常规函数包括以下9个函数:   ( ...

  4. JsonPath小结

    在查看DHC Assertions 模块说明的时候,无意间发现assert模块中JsonBody使用了 JSON Path ,兴趣使然,看了下,发现是类似解析xml用到的 XPath.通过路径来获取j ...

  5. Oracle 12C -- 统一启动/关闭PDBs

    SQL> select name,open_mode from v$pdbs; NAME OPEN_MODE ------------------------------ ---------- ...

  6. Android App卡顿慢优化之解决内存抖动及内存泄漏

    前面一篇博客说到了,内存抖动的第二种情况,就是必须在短时间内创建对象,但是要控制数量:这个问题目前可以使用对象池的方法解决. 3)Object Pools 在程序里面经常会遇到的一个问题是短时间内创建 ...

  7. 【转】Lisp 已死,Lisp 万岁!

    Lisp 已死,Lisp 万岁! 有一句古话,叫做“国王已死,国王万岁!”它的意思是,老国王已经死去,国王的儿子现在继位.这句话的幽默,就在于这两个“国王”其实指的不是同一个人,而你咋一看还以为它自相 ...

  8. Shell脚本开发规范

    一.前言 由于工作需要,最近重新开始拾掇shell脚本.虽然绝大部分命令自己平时也经常使用,但是在写成脚本的时候总觉得写的很难看.而且当我在看其他人写的脚本的时候,总觉得难以阅读.毕竟shell脚本这 ...

  9. python groupby 函数 as_index

    在官方网站中对as_index有以下介绍: as_index : boolean, default True For aggregated output, return object with gro ...

  10. Hive实现从表中随机抽样得到一个不重复的数据样本

    select a.* from ( select a.*,rand(12345) as random from tripdata a ) a where random between 0 and 0. ...