【CF744D】Hongcow Draws a Circle 二分+几何
【CF744D】Hongcow Draws a Circle
题意:给你平面上n个红点和m个蓝点,求一个最大的圆,满足圆内不存在蓝点,且至少包含一个红点。
$n,m\le 10^3$
题解:我们先不考虑半径为inf的情况。显然所求的圆一定是要与某个蓝点相切的。我们可以先枚举这个蓝点,然后二分答案。当半径已知、一个点固定时,圆的可能位置只能是绕着一个点旋转得到的结果,其余的所有点都对应着极角上的一段区间,我们可以将这些区间排序,采用扫描线,看一下是否存在一段区间包含红点且不包含蓝点即可。
但是如果你仔细分析的话你会发现这样的二分是不满足单调性的。不过如果我们一开始不光枚举蓝点,还枚举所有红点,一起进行二分,这样就满足单调性了。
直接做的复杂度是$O(n\log ^2 n)$,会TLE,看了标程加了一些神优化才过~具体见代码。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#define pi acos(-1.0)
using namespace std;
typedef long double db;
const db eps=1e-12;
const int maxn=1010;
struct point
{
db x,y;
point() {}
point(db a,db b) {x=a,y=b;}
point operator + (const point &a) const {return point(x+a.x,y+a.y);}
point operator - (const point &a) const {return point(x-a.x,y-a.y);}
db operator * (const point &a) const {return x*a.y-y*a.x;}
point operator * (const db &a) const {return point(x*a,y*a);}
}p[maxn<<1];
struct line
{
point p,v;
line() {}
line(point a,point b) {p=a,v=b;}
};
struct node
{
db x;
int k;
node() {}
node(double a,int b) {x=a,k=b;}
}q[maxn<<3];
int n,m,tot;
inline db dis(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
db getrange(point a,point b,db R)
{
db d=dis(a,b)/2;
return acos(d/R);
}
bool cmp(const node &a,const node &b) {return a.x<b.x;}
inline bool solve(int x,db R)
{
int i;
tot=0;
if(x<=n) q[++tot]=node(-pi,1),q[++tot]=node(pi,-1);
else
{
for(i=1;i<=n;i++)
{
if(dis(p[i],p[x])>R+R-eps) continue;
db a=getrange(p[x],p[i],R),b=atan2(p[i].y-p[x].y,p[i].x-p[x].x);
db c=b-a,d=b+a;
if(c<-pi) c+=2*pi;
if(d>pi) d-=2*pi;
if(c<d) q[++tot]=node(c,1),q[++tot]=node(d,-1);
else q[++tot]=node(-pi,1),q[++tot]=node(d,-1),q[++tot]=node(c,1),q[++tot]=node(pi,-1);
}
}
for(i=n+1;i<=n+m;i++)
{
if(dis(p[i],p[x])>R+R-eps) continue;
db a=getrange(p[x],p[i],R),b=atan2(p[i].y-p[x].y,p[i].x-p[x].x);
db c=b-a,d=b+a;
if(c<-pi) c+=2*pi;
if(d>pi) d-=2*pi;
if(c<d) q[++tot]=node(c,-10000),q[++tot]=node(d,10000);
else q[++tot]=node(-pi,-10000),q[++tot]=node(d,10000),q[++tot]=node(c,-10000),q[++tot]=node(pi,10000);
}
sort(q+1,q+tot+1,cmp);
int tmp=0;
for(i=1;i<=tot;i++)
{
if(tmp>0&&i!=1&&q[i].x>q[i-1].x+eps) return 1;
tmp+=q[i].k;
}
return 0;
}
inline bool check(db mid)
{
for(int i=1;i<=n+m;i++) if(solve(i,mid)) return 1;
return 0;
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
int main()
{
n=rd(),m=rd();
if(m==1)
{
puts("-1");
return 0;
}
int i;
for(i=1;i<=n;i++) p[i].x=rd(),p[i].y=rd();
random_shuffle(p+1,p+n+1);
for(i=1;i<=m;i++) p[i+n].x=rd(),p[i+n].y=rd();
random_shuffle(p+n+1,p+m+1);
db l=0,r,mid;
for(i=1;i<=n+m;i++) if(solve(i,l)) //神优化
{
r=1e9;
while(r-l>1e-5)
{
mid=(l+r)/2;
if(solve(i,mid)) l=mid;
else r=mid;
}
}
if(l>1e9-1) puts("-1");
else printf("%.18Lf",l);
return 0;
}
【CF744D】Hongcow Draws a Circle 二分+几何的更多相关文章
- Incircle and Circumcircle(二分+几何)浙大月赛zoj3806(详解版)图
Incircle and Circumcircle Time Limit: 2 Seconds Memory Limit: 65536 KB Special Judge A triangle is o ...
- hdu 4033 二分几何
参考:http://blog.csdn.net/libin56842/article/details/26618129 题意:给一个正多边形内点到其他顶点的距离(逆时针给出),求正多边形的边长 二分多 ...
- 二分法 (UVA10668 Expanding Rods)(二分+几何)
转载请注明出处:優YoU http://user.qzone.qq.com/289065406/blog/1301845324 大致题意: 一根两端固定在两面墙上的杆 受热弯曲后变弯曲.求前后两个状态 ...
- 【CF887E】Little Brother 二分+几何
[CF887E]Little Brother 题意:给你n个圆和一条线段,保证圆和圆.圆和线段所在直线不相交,不相切,不包含.求一个过线段两端点的圆,满足不和任何圆相交(可以相切.包含).问圆的最小半 ...
- Codeforces Round #409 (rated, Div. 2, based on VK Cup 2017 Round 2) A B C D 暴力 水 二分 几何
A. Vicious Keyboard time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- 【BZOJ3007】拯救小云公主 二分+几何+对偶图
[BZOJ3007]拯救小云公主 Description 英雄又即将踏上拯救公主的道路…… 这次的拯救目标是——爱和正义的小云公主. 英雄来到boss的洞穴门口,他一下子就懵了 ...
- POJ 1905 题解(二分+几何)
题面 传送门 分析 如图:已知AB=L,弧AB=L(1+nC)" role="presentation" style="position: relative;& ...
- POJ2242 The Circumference of the Circle(几何)
题目链接. 题目大意: 给定三个点,即一个任意三角形,求外接圆的周长. 分析: 外接圆的半径可以通过公式求得(2*r = a/sinA = b/sinB = c/sinC),然后直接求周长. 注意: ...
- ZJOI2018游记Round1
广告 ZJOI2018Round2游记 All Falls Down 非常感谢学弟学妹们捧场游记虽然这是一篇假游记 ZJOI Round1今天正式落下帷幕.在这过去的三天里遇到了很多朋友,见识了很多有 ...
随机推荐
- Java编程思想学习笔记——类的访问权限
类的访问权限 Java中,访问权限修饰词用于确定库中哪些类对于该库的使用者是可用的. public class Foo{ } 注意点: 每个文件(编译单元)只能有一个public类. public类的 ...
- node.js和socket.io实现im
im——Instant Messaging 即时通讯 基本技术原理 (1)通过IM服务器登陆或注销 (2)用户A通过列表找到B,用户B获得消息并与之交谈 (3)通过IM服务器指引建立与B单独的通讯通道 ...
- Linux系统安装workerman,启动wss 服务
安装workerman其实很简单,只要会简单的linux口令就可以搞定, 这里我给大家演示一下如何安装workerman 进入终端的过程就不用演示了吧... 输入root及密码进入终端后找到站点根目录 ...
- 错误 Unable to find vcvarsall.bat 的终极无敌最完美的解决办法
Windows 上通过 pip 安装 python 包,经常会出现这种错误. 如:pip install pyodbc. 这种错误的简单明了解释就是:python 编译器找不到计算机上面的 VC 编译 ...
- oracle自定义类型 示例
) ); ---自定义类型传参给存储过程,示例如下: create or replace procedure dropWf is cursor c_tenant is and t.id not in ...
- repo_folder
-- Create table create table REPO_FOLDER ( UUID ) not null, VALID ) not null, CREATE_TIME ) not null ...
- IIS------如何安装IIS
1.打开“控制面板”->“程序”->“打开或关闭Windows功能” 2.如图所示: 3.如图所示: 4.点击确定,配置完成
- Java显示指定类型的文件
文件作为存储数据的单元,会根据数据类型产生很多分类,也就是所谓的文件类型.在对数据文件进行操作时,常常需要根据不同的文件类型来作不同的处理.本实例实现的是读取文件夹指定类型的文件并显示到表格控件中.这 ...
- Docker background
什么是 Docker? Docker 提供了一个可以运行你的应用程序的封套(envelope),或者说容器.它原本是 dotCloud 启动的一个业余项目,并在前些时候开源了.它吸引了大量的关注和讨论 ...
- MongoDB的数据模型
文档的数据模型代表了数据的组织结构,一个好的数据模型能更好的支持应用程序.在MongoDB中,文档有两种数据模型,内嵌(embed)和引用(references). 内嵌 MongoDB的文档是无模式 ...