bzoj4561: [JLoi2016]圆的异或并
Description
在平面直角坐标系中给定N个圆。已知这些圆两两没有交点,即两圆的关系只存在相离和包含。求这些圆的异或面
Input
第一行包含一个正整数N,代表圆的个数。接下来N行,每行3个非负整数x,y,r,表示一个圆心在(x,y),半径为r的
Output
仅一行一个整数,表示所有圆的异或面积并除以圆周率Pi的结果。
用平衡树维护扫描线与圆的交点
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<set>
typedef long long i64;
const int N=;
int n;
i64 xs[N],ys[N],rs[N],X;
inline i64 p2(i64 x){return x*x;}
inline int _int(){
int x=,c=getchar(),f=;
while(c>||c<){if(c=='-')f=-;c=getchar();}
while(c>&&c<)x=x*+c-,c=getchar();
return x*f;
}
struct pos{
i64 x,y;
int sgn,dep;
i64 r;
double Y(){
i64 a=r-p2(x-X);
if(a<)return y;
return y+sgn*sqrt(a);
}
};
bool operator<(pos a,pos b){
double x=a.Y(),y=b.Y();
if(fabs(x-y)>=.)return x<y;
return a.sgn<b.sgn;
}
struct event{
bool in;
int id;
i64 x(){
if(in)return xs[id]-rs[id];
else return xs[id]+rs[id];
}
}e[N*];
bool operator<(event a,event b){
i64 c=a.x(),d=b.x();
if(c!=d)return c<d;
return a.in<b.in;
}
std::set<pos>line;
int deps[N];
int xp;
i64 xv[N*];
int main(){
n=_int();
for(int i=;i<n;i++){
xs[i]=_int();ys[i]=_int();rs[i]=_int();
xv[i*]=(e[i*]=(event){,i}).x();
xv[i*+]=(e[i*+]=(event){,i}).x();
}
std::sort(e,e+n*);
for(int p=;p<n*;++p){
int id=e[p].id,d;
if(e[p].in){
X=e[p].x();
pos w=(pos){xs[id],ys[id],,,p2(rs[id])};
std::set<pos>::iterator it=line.upper_bound(w);
if(it!=line.end()){
w=*it;
d=(w.sgn==?-w.dep:w.dep);
}else d=;
line.insert((pos){xs[id],ys[id],,d,p2(rs[id])});
line.insert((pos){xs[id],ys[id],-,d,p2(rs[id])});
deps[id]=d;
}else{
X=e[p].x();
line.erase(line.find((pos){xs[id],ys[id],,,p2(rs[id])}));
line.erase(line.find((pos){xs[id],ys[id],-,,p2(rs[id])}));
}
}
i64 ans=;
for(int i=;i<n;i++)ans+=rs[i]*rs[i]*deps[i];
printf("%lld\n",ans);
return ;
}
bzoj4561: [JLoi2016]圆的异或并的更多相关文章
- BZOJ4561 JLoi2016 圆的异或并 【扫描线】【set】*
BZOJ4561 JLoi2016 圆的异或并 Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面积并.异或面积并为:当一片区 ...
- bzoj4561: [JLoi2016]圆的异或并 圆的扫描线
地址:http://www.lydsy.com/JudgeOnline/problem.php?id=4561 题目: 4561: [JLoi2016]圆的异或并 Time Limit: 30 Sec ...
- BZOJ4561 JLOI2016圆的异或并(扫描线+平衡树)
考虑一条扫描线从左到右扫过这些圆.观察某一时刻直线与这些圆的交点,可以发现构成一个类似括号序列的东西,括号的包含关系与圆的包含关系是相同的.并且当扫描线逐渐移动时,括号间的相对顺序不变.于是考虑用se ...
- [BZOJ4561][JLOI2016]圆的异或并(扫描线)
考虑任何一条垂直于x轴的直线,由于圆不交,所以这条直线上的圆弧构成形似括号序列的样子,且直线移动时圆之间的相对位置不变. 将每个圆拆成两边,左端加右端删.每次加圆时考虑它外面最内层的括号属于谁.用se ...
- BZOJ4561: [JLoi2016]圆的异或并 计算几何+treap
因为本题保证两圆之间只有相包含或相离(不用担心两圆重合 因为我没有RE) 所以每个圆之间的相对位置是确定的 也就是可以按极角排序的, 所以可以按横坐标排序后 扫描同时用treap维护加圆删圆(即遇到 ...
- 【BZOJ4561】[JLoi2016]圆的异或并 扫描线
[BZOJ4561][JLoi2016]圆的异或并 Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面积并.异或面积并为:当一 ...
- 【BZOJ-4561】圆的异或并 set + 扫描线
4561: [JLoi2016]圆的异或并 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 254 Solved: 118[Submit][Statu ...
- bzoj 4561: [JLoi2016]圆的异或并
Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面 积并.异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个 ...
- BZOJ 4561 [JLoi2016]圆的异或并 ——扫描线
扫描线的应用. 扫描线就是用数据结构维护一个相对的顺序不变,带修改的东西. 通常只用于一次询问的情况. 抽象的看做一条垂直于x轴直线从左向右扫过去. 这道题目要求求出所有圆的异或并. 所以我们可以求出 ...
随机推荐
- Qt之QCheckBox
简述 QCheckBox继承自QAbstractButton,它提供了一个带文本标签的复选框. QCheckBox(复选框)和QRadioButton(单选框)都是选项按钮.这是因为它们都可以在开(选 ...
- String类、正则表达式
一.String类 String使用非常频繁,用来描述一个字符串.String中实现了很多 对字符串方便的操作方法. String内部使用char[]实现字符串的数据保存 字符串的&quo ...
- POJ 2253 Frogger
题目链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS Memory Limit: 65536K Total Submissi ...
- html部分---表单、iframe、frameset及其他字符的用法(以及name、id、value的作用与区别);
<form action="aa.html" method="post/get"> /action的作用是提交到..,methed是提交方法,用po ...
- Android——ListView相关作业(修改版)
给GridView提供点击按钮添加新数据,单击项目修改,长按删除功能 activity_practise7的layout文件: <?xml version="1.0" enc ...
- JS构造函数详解
//构造函数 //使自己的对象多次复制,同时实例根据设置的访问等级可以访问其内部的属性和方法 //当对象被实例化后,构造函数会立即执行它所包含的任何代码 function myObject(msg) ...
- ls命令大全
ls 命令:15个Linux面试级问题--第一集 [日期:2015-03-12] 来源:Linux社区 作者:GuiltyMan [字体:大 中 小] 注释:'ls'是“list”的意思,重点在 ...
- VC++ 0xC0000005: Access violation.
public: COptionDlg(CWnd* pParent = NULL); // 标准构造函数 virtual ~COptionDlg(); TCONFIG m_tCfg; // 对话框数据 ...
- 你足够了解Context吗?
你足够了解Context吗? 这里有关于Context的一切-写在前面: 当我还是一个24K纯Android新手的时候(现在是也是个小Android萌新),拿着工具书对着电脑敲敲打打,那个时候我就有一 ...
- PHP快速排序及其时间复杂度
<?php function quickSort(&$arr, $l, $r) { if (count($arr)<2 || $l>$r) return; $tmp_l = ...