原文网址:http://www.cnblogs.com/geneil/archive/2011/12/03/2272869.html

一、linux系统将设备分为3类:字符设备、块设备、网络设备。使用驱动程序:

1、字符设备:是指只能一个字节一个字节读写的设备,不能随机读取设备内存中的某一数据,读取数据需要按照先后数据。字符设备是面向流的设备,常见的字符设备有鼠标、键盘、串口、控制台和LED设备等。
2、块设备:是指可以从设备的任意位置读取一定长度数据的设备。块设备包括硬盘、磁盘、U盘和SD卡等。

  每一个字符设备或块设备都在/dev目录下对应一个设备文件。linux用户程序通过设备文件(或称设备节点)来使用驱动程序操作字符设备和块设备。

二、字符设备驱动程序基础:
1、主设备号和次设备号(二者一起为设备号):
  一个字符设备或块设备都有一个主设备号和一个次设备号。主设备号用来标识与设备文件相连的驱动程序,用来反映设备类型。次设备号被驱动程序用来辨别操作的是哪个设备,用来区分同类型的设备。
  linux内核中,设备号用dev_t来描述,2.6.28中定义如下:
  typedef u_long dev_t;
  在32位机中是4个字节,高12位表示主设备号,低12位表示次设备号。

可以使用下列宏从dev_t中获得主次设备号:                   也可以使用下列宏通过主次设备号生成dev_t:
MAJOR(dev_t dev);                              MKDEV(int major,int minor);
MINOR(dev_t dev);


2、分配设备号(两种方法):

(1)静态申请:
int register_chrdev_region(dev_t from, unsigned count, const char *name);

(2)动态分配:

int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, const char *name);

注销设备号

void unregister_chrdev_region(dev_t from, unsigned count);

创建设备文件
利用cat /proc/devices查看申请到的设备名,设备号。
(1)使用mknod手工创建:mknod filename type major minor
(2)自动创建;

  利用udev(mdev)来实现设备文件的自动创建,首先应保证支持udev(mdev),由busybox配置。在驱动初始化代码里调用class_create为该设备创建一个class,再为每个设备调用device_create创建对应的设备。

3、字符设备驱动程序重要的数据结构
(1)struct file:代表一个打开的文件描述符,系统中每一个打开的文件在内核中都有一个关联的struct file。它由内核在open时创建,并传递给在文件上操作的任何函数,直到最后关闭。当文件的所有实例都关闭之后,内核释放这个数据结构。

(2)struct inode:用来记录文件的物理信息。它和代表打开的file结构是不同的。一个文件可以对应多个file结构,但只有一个inode结构。inode一般作为file_operations结构中函数的参数传递过来。
  inode译成中文就是索引节点。每个存储设备或存储设备的分区(存储设备是硬盘、软盘、U盘 ... ... )被格式化为文件系统后,应该有两部份,一部份是inode,另一部份是Block,Block是用来存储数据用的。而inode呢,就是用来存储这些数据的信息,这些信息包括文件大小、属主、归属的用户组、读写权限等。inode为每个文件进行信息索引,所以就有了inode的数值。操作系统根据指令,能通过inode值最快的找到相对应的文件。

(3)struct file_operations

本部分来源于:http://blog.chinaunix.net/space.php?uid=20729583&do=blog&id=1884550,感谢chinahhucai的分享。

三、字符设备驱动程序设计

1.设备注册
在linux2.6内核中,字符设备使用struct cdev来描述;

struct cdev
{
struct kobject kobj;//内嵌的kobject对象
struct module *owner;//所属模块
struct file_operations *ops;//文件操作结构体
struct list_head list;
dev_t dev;//设备号,长度为32位,其中高12为主设备号,低20位为此设备号
unsigned int count;
};

字符设备的注册分为三个步骤:

(1)分配cdev: struct cdev *cdev_alloc(void);
(2)初始化cdev: void cdev_init(struct cdev *cdev, const struct file_operations *fops);
(3)添加cdev: int cdev_add(struct cdev *p, dev_t dev, unsigned count)

2.设备操作的实现:file_operations函数集的实现(要明确某个函数什么时候被调用?调用来做什么操作?)
特别注意:驱动程序应用程序的数据交换:
  驱动程序和应用程序的数据交换是非常重要的。file_operations中的read()和write()函数,就是用来在驱动程序和应用程序间交换数据的。通过数据交换,驱动程序和应用程序可以彼此了解对方的情况。但是驱动程序和应用程序属于不同的地址空间。驱动程序不能直接访问应用程序的地址空间;同样应用程序也不能直接访问驱动程序的地址空间,否则会破坏彼此空间中的数据,从而造成系统崩溃,或者数据损坏。安全的方法是使用内核提供的专用函数,完成数据在应用程序空间和驱动程序空间的交换。这些函数对用户程序传过来的指针进行了严格的检查和必要的转换,从而保证用户程序与驱动程序交换数据的安全性。这些函数有:

unsigned long copy_to_user(void __user *to, const void *from, unsigned long n); 
unsigned long copy_from_user(void *to, const void __user *from, unsigned long n);
put_user(local,user);
get_user(local,user);

3.设备注销:void cdev_del(struct cdev *p);

四、字符设备驱动小结:

  字符设备是3大类设备(字符设备、块设备、网络设备)中较简单的一类设备,其驱动程序中完成的主要工作是初始化、添加和删除cdev结构体,申请和释放设备号,以及填充file_operation结构体中操作函数,并实现file_operations结构体中的read()、write()、ioctl()等重要函数。如图所示为cdev结构体、file_operations和用户空间调用驱动的关系。

五:字符设备驱动程序分析:

(1)memdev.h

(2)memdev.c

static mem_major = MEMDEV_MAJOR;

module_param(mem_major, int, S_IRUGO);

struct mem_dev *mem_devp; /*设备结构体指针*/

struct cdev cdev; 

/*文件打开函数*/
int mem_open(struct inode *inode, struct file *filp)
{
struct mem_dev *dev; /*获取次设备号*/
int num = MINOR(inode->i_rdev); if (num >= MEMDEV_NR_DEVS)
return -ENODEV;
dev = &mem_devp[num]; /*将设备描述结构指针赋值给文件私有数据指针*/
filp->private_data = dev; return 0;
} /*文件释放函数*/
int mem_release(struct inode *inode, struct file *filp)
{
return 0;
} /*读函数*/
static ssize_t mem_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
{
unsigned long p = *ppos; /*记录文件指针偏移位置*/
unsigned int count = size; /*记录需要读取的字节数*/
int ret = 0; /*返回值*/
struct mem_dev *dev = filp->private_data; /*获得设备结构体指针*/ /*判断读位置是否有效*/
if (p >= MEMDEV_SIZE) /*要读取的偏移大于设备的内存空间*/
return 0;
if (count > MEMDEV_SIZE - p) /*要读取的字节大于设备的内存空间*/
count = MEMDEV_SIZE - p; /*读数据到用户空间:内核空间->用户空间交换数据*/
if (copy_to_user(buf, (void*)(dev->data + p), count))
{
ret = - EFAULT;
}
else
{
*ppos += count;
ret = count; printk(KERN_INFO "read %d bytes(s) from %d\n", count, p);
} return ret;
} /*写函数*/
static ssize_t mem_write(struct file *filp, const char __user *buf, size_t size, loff_t *ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = 0;
struct mem_dev *dev = filp->private_data; /*获得设备结构体指针*/ /*分析和获取有效的写长度*/
if (p >= MEMDEV_SIZE)
return 0;
if (count > MEMDEV_SIZE - p) /*要写入的字节大于设备的内存空间*/
count = MEMDEV_SIZE - p; /*从用户空间写入数据*/
if (copy_from_user(dev->data + p, buf, count))
ret = - EFAULT;
else
{
*ppos += count; /*增加偏移位置*/
ret = count; /*返回实际的写入字节数*/ printk(KERN_INFO "written %d bytes(s) from %d\n", count, p);
} return ret;
} /* seek文件定位函数 */
static loff_t mem_llseek(struct file *filp, loff_t offset, int whence)
{
loff_t newpos; switch(whence) {
case 0: /* SEEK_SET */ /*相对文件开始位置偏移*/
newpos = offset; /*更新文件指针位置*/
break; case 1: /* SEEK_CUR */
newpos = filp->f_pos + offset;
break; case 2: /* SEEK_END */
newpos = MEMDEV_SIZE -1 + offset;
break; default: /* can't happen */
return -EINVAL;
}
if ((newpos<0) || (newpos>MEMDEV_SIZE))
return -EINVAL; filp->f_pos = newpos;
return newpos; } /*文件操作结构体*/
static const struct file_operations mem_fops =
{
.owner = THIS_MODULE,
.llseek = mem_llseek,
.read = mem_read,
.write = mem_write,
.open = mem_open,
.release = mem_release,
}; /*设备驱动模块加载函数*/
static int memdev_init(void)
{
int result;
int i; dev_t devno = MKDEV(mem_major, 0); /* 申请设备号,当xxx_major不为0时,表示静态指定;当为0时,表示动态申请*/
/* 静态申请设备号*/
if (mem_major)
result = register_chrdev_region(devno, 2, "memdev");
else /* 动态分配设备号 */
{
result = alloc_chrdev_region(&devno, 0, 2, "memdev");
mem_major = MAJOR(devno); /*获得申请的主设备号*/
} if (result < 0)
return result; /*初始化cdev结构,并传递file_operations结构指针*/
cdev_init(&cdev, &mem_fops);
cdev.owner = THIS_MODULE; /*指定所属模块*/
cdev.ops = &mem_fops; /* 注册字符设备 */
cdev_add(&cdev, MKDEV(mem_major, 0), MEMDEV_NR_DEVS); /* 为设备描述结构分配内存*/
mem_devp = kmalloc(MEMDEV_NR_DEVS * sizeof(struct mem_dev), GFP_KERNEL);
if (!mem_devp) /*申请失败*/
{
result = - ENOMEM;
goto fail_malloc;
}
memset(mem_devp, 0, sizeof(struct mem_dev)); /*为设备分配内存*/
for (i=0; i < MEMDEV_NR_DEVS; i++)
{
mem_devp[i].size = MEMDEV_SIZE;
mem_devp[i].data = kmalloc(MEMDEV_SIZE, GFP_KERNEL);
memset(mem_devp[i].data, 0, MEMDEV_SIZE);
} return 0; fail_malloc:
unregister_chrdev_region(devno, 1); return result;
} /*模块卸载函数*/
static void memdev_exit(void)
{
cdev_del(&cdev); /*注销设备*/
kfree(mem_devp); /*释放设备结构体内存*/
unregister_chrdev_region(MKDEV(mem_major, 0), 2); /*释放设备号*/
} MODULE_AUTHOR("David Xie");
MODULE_LICENSE("GPL"); module_init(memdev_init);
module_exit(memdev_exit);

(3)应用程序(测试文件):app-mem.c

#include <stdio.h>

int main()
{
FILE *fp0 = NULL;
char Buf[4096]; /*初始化Buf*/
strcpy(Buf,"Mem is char dev!");
printf("BUF: %s\n",Buf); /*打开设备文件*/
fp0 = fopen("/dev/memdev0","r+");
if (fp0 == NULL)
{
printf("Open Memdev0 Error!\n");
return -1;
} /*写入设备*/
fwrite(Buf, sizeof(Buf), 1, fp0); /*重新定位文件位置(思考没有该指令,会有何后果)*/
fseek(fp0,0,SEEK_SET); /*清除Buf*/
strcpy(Buf,"Buf is NULL!");
printf("BUF: %s\n",Buf); /*读出设备*/
fread(Buf, sizeof(Buf), 1, fp0); /*检测结果*/
printf("BUF: %s\n",Buf); return 0; }

测试步骤:

1)cat /proc/devices看看有哪些编号已经被使用,我们选一个没有使用的XXX。
2)insmod memdev.ko
3)通过"mknod /dev/memdev0 c XXX 0"命令创建"/dev/memdev0"设备节点。
4)交叉编译app-mem.c文件,下载并执行:
#./app-mem,显示:
Mem is char dev!

【转】linux设备驱动程序之简单字符设备驱动的更多相关文章

  1. Linux 简单字符设备驱动程序 (自顶向下)

    第零章:扯扯淡 特此总结一下写的一个简单字符设备驱动程序的过程,我要强调一下“自顶向下”这个介绍方法,因为我觉得这样更容易让没有接触过设备驱动程序的童鞋更容易理解,“自顶向下”最初从<计算机网络 ...

  2. arm-linux字符设备驱动开发之---简单字符设备驱动

    一.linux系统将设备分为3类:字符设备.块设备.网络设备.使用驱动程序: 1.字符设备:是指只能一个字节一个字节读写的设备,不能随机读取设备内存中的某一数据,读取数据需要按照先后数据.字符设备是面 ...

  3. 嵌入式Linux设备驱动程序:编写内核设备驱动程序

    嵌入式Linux设备驱动程序:编写内核设备驱动程序 Embedded Linux device drivers: Writing a kernel device driver 编写内核设备驱动程序 最 ...

  4. 【Linux-驱动】简单字符设备驱动结构和初始化

    (1)在编写简单字符设备驱动的时候,首先要申请一个设备结构struct cdev: struct cdev { struct kobject kobj; struct module *owner; / ...

  5. 嵌入式Linux驱动学习之路(二十一)字符设备驱动程序总结和块设备驱动程序的引入

    字符设备驱动程序 应用程序是调用C库中的open read write等函数.而为了操作硬件,所以引入了驱动模块. 构建一个简单的驱动,有一下步骤. 1. 创建file_operations 2. 申 ...

  6. Linux设备驱动程序学习 高级字符驱动程序操作[阻塞型I/O和非阻塞I/O]【转】

    转自:http://blog.csdn.net/jacobywu/article/details/7475432 阻塞型I/O和非阻塞I/O 阻塞:休眠 非阻塞:异步通知 一 休眠 安全地进入休眠的两 ...

  7. linux设备驱动程序-i2c(0)-i2c设备驱动源码实现

    (基于4.14内核版本) 为了梳理清楚linux内核中的i2c实现框架,从本文开始,博主将分几个章节分别解析i2c总线在linux内核中的形成过程.匹配过程.以及设备驱动程序源码实现. 在介绍linu ...

  8. USB驱动程序之USB设备驱动程序1简单编写

    1.驱动编写分析 (1)usb总线驱动程序在我们接入USB设备的时候会帮我们构造一个新的usb_device.注册到总线里面来.左边这一块已经帮我们做好了,我们要做的是右边这一块.我们要构造一个usb ...

  9. Linux 简单字符设备驱动

    1.hello_drv.c (1) 初始化和卸载函数的格式是固定的,函数名自定义 (2) printk是内核的打印函数,用法与printf一致 (3) MODULE_LICENSE:模块代码支持开源协 ...

随机推荐

  1. html + css + js注释规范

    添加注释到代码中,是一个很好的习惯,而且极大的提高了代码的可读性 1.HTML <!--commentContent--> 2.CSS //commentContent /*comment ...

  2. java连接access数据库

    完整代码: package odbcj; import java.sql.Connection; import java.sql.DriverManager; import java.sql.Prep ...

  3. SPRING IN ACTION 第4版笔记-第十章Hitting the database with spring and jdbc-003-四种方式获取DataSource

    一.概述 1.Spring offers several options for configuring data-source beans in your Spring application, i ...

  4. React架构、设计思想

    一.

  5. Android TextView 文字居中

    有2种方法可以设置TextView文字居中: 一:在xml文件设置:android:gravity="center" 二:在程序中设置:m_TxtTitle.setGravity( ...

  6. Recover Binary Search Tree-恢复二叉查找树

    题目描述: 由于某种原因一个二叉排序树的两个节点的元素被交换,在不改变树的结构的情况下恢复这颗二叉排序树 题目来源: http://oj.leetcode.com/problems/recover-b ...

  7. linux下安装配置DHCP服务器

    前提是已经安装了 core 及 base 两个组 1 2 3 4 5 # cat /etc/redhat-release   Red Hat Enterprise Linux Server relea ...

  8. ava中拦截器 过滤器 监听器都有什么区别

    过滤器,是在java web中,你传入的request,response提前过滤掉一些信息,或者提前设置一些参数,然后再传入servlet或者struts2的action进行业务逻辑,比如过滤掉非法u ...

  9. 16.allegro元件手动摆放[原创]

    一.手动摆放 --- -- 一个个摆放 二.全局设置 --- 这里都是全局的 显示信息 三.快速摆放所有元件 -- ---- 四.显示的内容很多,我们来设置下显示 -- 1 --- 2 --- 3 - ...

  10. poj-2393 Yogurt factory (贪心)

    http://poj.org/problem?id=2393 奶牛们有一个工厂用来生产奶酪,接下来的N周时间里,在第i周生产1 单元的奶酪需要花费ci,同时它们也有一个储存室,奶酪放在那永远不会坏,并 ...