import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.client.metrics.ScanMetrics; import java.io.IOException; /**
* Created by similarface on 16/8/23.
*/
public class ScanDataUseCache {
private static Table table=null;
public static Table getTable() {
if(table==null){
try {
Configuration configuration = HBaseConfiguration.create();
Connection connection = ConnectionFactory.createConnection(configuration);
//建立表的连接
return connection.getTable(TableName.valueOf("testtable"));
}catch (IOException e){
return table;
}
}
return table;
}
private static void scan(int caching,int batch,boolean small) {
int count=0;
//setCaching 设置的值为每次rpc的请求记录数,默认是1;cache大可以优化性能,但是太大了会花费很长的时间进行一次传输。
//setBatch 设置每次取的column size;有些row特别大,所以需要分开传给client,就是一次传一个row的几个column。
//setSmall 是否为小扫描
//setScanMetricsEnabled 使用了集合
Scan scan = new Scan().setCaching(caching).setBatch(batch).setSmall(small).setScanMetricsEnabled(true);
ResultScanner scanner=null;
try {
scanner = getTable().getScanner(scan);
}catch (IOException e){
System.out.println(e);
}
if (scanner!=null){
for (Result result:scanner){
count++;
}
scanner.close();
ScanMetrics metrics = scan.getScanMetrics();
System.out.println("Caching: " + caching + ", Batch: " + batch + ", Small: " + small + ", Results: " + count + ", RPCs: " + metrics.countOfRPCcalls);
}
else {
System.out.println("Error");
}
} public static void main(String[] args) throws IOException {
// Caching: 1, Batch: 1, Small: false, Results: 9, RPCs: 12
scan(1, 1, false); //Caching: 1, Batch: 0, Small: false, Results: 4, RPCs: 7
scan(1, 0, false); // Caching: 1, Batch: 0, Small: true, Results: 4, RPCs: 0
scan(1, 0, true); //Caching: 200, Batch: 1, Small: false, Results: 9, RPCs: 3
scan(200, 1, false); //Caching: 200, Batch: 0, Small: false, Results: 4, RPCs: 3
scan(200, 0, false); //Caching: 200, Batch: 0, Small: true, Results: 4, RPCs: 0
scan(200, 0, true); // Caching: 2000, Batch: 100, Small: false, Results: 4, RPCs: 3
scan(2000, 100, false); // Caching: 2, Batch: 100, Small: false, Results: 4, RPCs: 5
scan(2, 100, false); // Caching: 2, Batch: 10, Small: false, Results: 4, RPCs: 5
scan(2, 10, false); // Caching: 2, Batch: 10, Small: false, Results: 4, RPCs: 5
scan(5, 100, false); // Caching: 5, Batch: 100, Small: false, Results: 4, RPCs: 3
scan(5, 20, false); // Caching: 10, Batch: 10, Small: false, Results: 4, RPCs: 3
scan(10, 10, false);
}
} /**
Caching: 1, Batch: 0, Small: false, Results: 5, RPCs: 8
Caching: 1, Batch: 0, Small: true, Results: 5, RPCs: 0
Caching: 200, Batch: 1, Small: false, Results: 1009, RPCs: 8
Caching: 200, Batch: 0, Small: false, Results: 5, RPCs: 3
Caching: 200, Batch: 0, Small: true, Results: 5, RPCs: 0
Caching: 2000, Batch: 100, Small: false, Results: 14, RPCs: 3
Caching: 2, Batch: 100, Small: false, Results: 14, RPCs: 10
Caching: 2, Batch: 10, Small: false, Results: 104, RPCs: 55
Caching: 5, Batch: 100, Small: false, Results: 14, RPCs: 5
Caching: 5, Batch: 20, Small: false, Results: 54, RPCs: 13
Caching: 10, Batch: 10, Small: false, Results: 104, RPCs: 13
**/

这是一个9行数据的表

每行包含一些列

使用缓存为6  批量为3的扫描器

需要3个RPC

3个列装入一个Result实例

6个result到缓存中 组成一个RPC

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.client.metrics.ScanMetrics; import java.io.IOException; /**
* Created by similarface on 16/8/24.
*/
public class ScanWithOffsetAndLimit {
private static Table table = null; public static Table getTable() {
if (table == null) {
try {
Configuration configuration = HBaseConfiguration.create();
Connection connection = ConnectionFactory.createConnection(configuration);
//建立表的连接
return connection.getTable(TableName.valueOf("testtable"));
} catch (IOException e) {
return table;
}
}
return table;
} /**
* 遍历访问数据
* @param num 运行次序
* @param caching
* @param batch
* @param offset
* @param maxResults
* @param maxResultSize
* @param dump
* @throws IOException
*/
private static void scan(int num, int caching, int batch, int offset, int maxResults, int maxResultSize, boolean dump
) throws IOException {
int count = 0;
Scan scan = new Scan().setCaching(caching).setBatch(batch)
.setRowOffsetPerColumnFamily(offset)
.setMaxResultsPerColumnFamily(maxResults)
.setMaxResultSize(maxResultSize)
.setScanMetricsEnabled(true);
ResultScanner scanner = getTable().getScanner(scan);
System.out.println("Scan #" + num + " running...");
for (Result result : scanner) {
count++;
if (dump)
System.out.println("Result [" + count + "]:" + result);
}
scanner.close();
ScanMetrics metrics = scan.getScanMetrics();
System.out.println("Caching: " + caching + ", Batch: " + batch +
", Offset: " + offset + ", maxResults: " + maxResults +
", maxSize: " + maxResultSize + ", Results: " + count +
", RPCs: " + metrics.countOfRPCcalls);
} public static void main(String[] args) throws IOException {
//偏移为0 最大2个cell 所以会扫描到列1 和列2
scan(1, 11, 0, 0, 2, -1, true);
//偏移为4 最大2个cell 所以会扫描到列5 和列6
scan(2, 11, 0, 4, 2, -1, true);
//
scan(3, 5, 0, 0, 2, -1, false);
scan(4, 11, 2, 0, 5, -1, true);
scan(5, 11, -1, -1, -1, 1, false);
scan(6, 11, -1, -1, -1, 10000, false);
}
} /**
Caching: 11, Batch: 0, Offset: 0, maxResults: 2, maxSize: -1, Results: 5005, RPCs: 458
Caching: 11, Batch: 0, Offset: 4, maxResults: 2, maxSize: -1, Results: 1, RPCs: 3
Caching: 5, Batch: 0, Offset: 0, maxResults: 2, maxSize: -1, Results: 5005, RPCs: 1004
Caching: 11, Batch: 2, Offset: 0, maxResults: 5, maxSize: -1, Results: 5009, RPCs: 458
Caching: 11, Batch: -1, Offset: -1, maxResults: -1, maxSize: 1, Results: 5005, RPCs: 11012
Caching: 11, Batch: -1, Offset: -1, maxResults: -1, maxSize: 10000, Results: 5005, RPCs: 469
**/

Hbase之缓存扫描加快读取速度的更多相关文章

  1. ASP.NET状缓存Cache的应用-提高数据库读取速度

    原文:ASP.NET状缓存Cache的应用-提高数据库读取速度 一. Cache概述       既然缓存中的数据其实是来自数据库的,那么缓存中的数据如何和数据库进行同步呢?一般来说,缓存中应该存放改 ...

  2. 优化SQLServer数据库加快查询速度

    查询速度慢的原因很多,常见如下几种: 1.没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷) 2.I/O吞吐量小,形成了瓶颈效应. 3.没有创建计算列导致查询不优化. 4.内存不足 ...

  3. 使用Openresty加快网页速度

    新年快乐~~~ 上一篇文章讲到使用多级缓存来减少数据库的访问来加快网页的速度,只是,仍旧没有"嗖"一下就加载出来的感觉,想再优化一下,优化代码什么的已经到了极限.上周无意中看到了o ...

  4. mysql千万级数据库插入速度和读取速度的调整记录

    一般情况下mysql上百万数据读取和插入更新是没什么问题了,但到了上千万级就会出现很慢,下面我们来看mysql千万级数据库插入速度和读取速度的调整记录吧. 1)提高数据库插入性能中心思想:尽量将数据一 ...

  5. 数据读取速度达1.5G/s,UFS 2.1存储技术曝光

    目前最快的是苹果NVME,当然UFS2.1也不差 iPhone6s与iPhone6s Plus在硬件的规格上有了很大的提升,但是它们身上的变化远没有苹果在发布会上所提到的A9处理器.1200万摄像头以 ...

  6. 160304-01、mysql数据库插入速度和读取速度的调整记录

    需求:由于项目变态,需要在一个比较短时间段急剧增加数据库记录(两三天内,由于0增加至5亿).在整个过程调优过程非常艰辛 思路: (1)提高数据库插入性能中心思想:尽量将数据一次性写入到Data Fil ...

  7. mysql千万级数据库插入速度和读取速度的调整

    mysql上百万数据读取和插入更新一般没什么问题,但上千万后速度会很慢,如何调整配置,提高效率.如下: 1.尽量将数据一次性写入DataFile和减少数据库的checkpoint操作,调整如下参数: ...

  8. Linux检测硬盘读取速度

    1. 清空缓存 > /proc/sys/vm/drop_caches 2. 测试读取速度 a. 将/dev/zero中数据按1M的数据单位写入testfile,共写512个单位,并不通过缓存 c ...

  9. Android开发之制作圆形头像自定义View,直接引用工具类,加快开发速度。带有源代码学习

    作者:程序员小冰,CSDN博客:http://blog.csdn.net/qq_21376985 QQ986945193 博客园主页:http://www.cnblogs.com/mcxiaobing ...

随机推荐

  1. Uva 10305 给任务排序

    题目链接:https://uva.onlinejudge.org/external/103/10305.pdf 紫书P167 拓扑排序. dfs——从一个点出发,dfs 与之相连的所有点,把本身放入到 ...

  2. phpcms 02

    头部和尾部包含 1 默认的首页模板 C:\wamp\www\phpcms\templates\ypzy2014\content\index.html 打开模板查看 第一句 {template &quo ...

  3. hdu 2837 坑题。

    Calculation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  4. Android开发之Theme、Style探索及源码浅析

    1 背景 前段时间群里有伙伴问到了关于Android开发中Theme与Style的问题,当然,这类东西在网上随便一搜一大把模板,所以关于怎么用的问题我想这里也就不做太多的说明了,我们这里把重点放在理解 ...

  5. #ifdef DEBUG的理解

    今天看到一段代码,对ifdef的概念比较模糊,于是去学习了一下,找到一个很好的解释,如下: 在工程设置里有一些设置会对该工程自动产生一系列的宏,用以控制程序的编译和运行.就好象楼上说的一样,如果你把代 ...

  6. java中的构造函数

    在c++中就学习了构造函数,今天学习java又碰到了构造函数,重新写一篇博客来理解一下 其实直接听这个词并不能理解这是什么,但其实看了它的作用,就很好理解了 当创建一个对象时,往往需要做一些初始化工作 ...

  7. C/C++通过WMI和系统API函数获取获取系统硬件配置信息

    转载:http://www.cnblogs.com/renyuan/archive/2012/12/29/2838716.html 转载:http://blog.csdn.net/jhqin/arti ...

  8. mysql 常用操作指令

    (1)centos mysql数据库文件在哪? [root@localhost ~]# find / -name mysql (2)查找数据库备份工具 mysqldump [root@localhos ...

  9. Cheatsheet: 2013 11.12 ~ 11.30

    Mobile Xcode 5 Essentials Android vs. iOS Development: Fight! Using MVC to Understand ASP.NET, iOS, ...

  10. <iframe>标签的一些说明

    <iframe>标签里的marginwidth/marginheight属性定义的是框架内部的margin(框架和其父元素之间的margin可以用style="margin:.. ...