一个很玄乎的问题,但听到2-SAT之后就豁然开朗了。题目的意思是这样的,给你n个点群,每个点群里面有两个点,你要在每个点群里面选一个点,以这些点做半径为r的圆,然后r会有一个最大值,问的就是怎么选这些点使得r最大。

2-SAT就是对于每个变量有一些制约的关系   a->b 表示选了a就就要选b。然后我们二分这个半径,对于两点间距离<2*r的点(a,b)选了a就不能选b,选了b就不能选a,以此构图。然后跑一次强连通分量。最后判是否有解的时候就是判对于两个属于相同点群的点,它们不能处于同一强连通分量下。写的时候跪的点实在太多了,数组越界呀,强连通写错呀,精度呀,这样的题太坑爹了- -0

#pragma warning(disable:4996)
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<vector>
#define ll long long
#define maxn 220
#define eps 1e-8
using namespace std; struct Point
{
double x, y, z;
Point(double xi, double yi, double zi) :x(xi), y(yi), z(zi){}
Point(){}
}p[maxn * 2]; double dist(Point a, Point b){
return sqrt((a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y) + (a.z - b.z)*(a.z - b.z));
} double dis[maxn * 2][maxn * 2]; int low[maxn * 2];
int pre[maxn * 2];
int dfs_clock;
int sta[maxn * 2];
int st;
int sccno[maxn * 2];
int n;
vector<int> G[maxn * 2];
int scc_cnt; int dcmp(double x){
return (x > eps) - (x < -eps);
} void dfs(int u){
low[u] = pre[u] = ++dfs_clock;
sta[++st] = u;
for (int i = 0; i < G[u].size(); i++){
int v = G[u][i];
if (!pre[v]){
dfs(v);
low[u] = min(low[u], low[v]);
}
else if (!sccno[v]){
low[u] = min(low[u], pre[v]);
}
}
if (low[u] == pre[u]){
++scc_cnt;
while (1){
int x = sta[st]; st--;
sccno[x] = scc_cnt;
if (x == u) break;
}
}
} bool judge(double x)
{
memset(sccno, 0, sizeof(sccno));
memset(pre, 0, sizeof(pre));
memset(low, 0, sizeof(low));
st = 0; dfs_clock = 0;
scc_cnt = 0;
for (int i = 0; i <= 2 * n; i++) G[i].clear(); for (int i = 0; i < n; i++){
for (int j = i + 1; j < n; j++){
if (dcmp(dis[i][j] - 2 * x) < 0){
G[i].push_back(j + n);
G[j].push_back(i + n);
}
if (dcmp(dis[i][j + n] - 2 * x) < 0){
G[i].push_back(j);
G[j + n].push_back(i + n);
}
if (dcmp(dis[i + n][j] - 2 * x) < 0){
G[i + n].push_back(j + n);
G[j].push_back(i);
}
if (dcmp(dis[i + n][j + n] - 2 * x) < 0){
G[i + n].push_back(j);
G[j + n].push_back(i);
}
}
}
for (int i = 0; i < 2 * n; i++){
if (!pre[i]) dfs(i);
}
for (int i = 0; i < n; i++){
if (sccno[i] == sccno[i + n]) return false;
}
return true;
} int main()
{
while (cin >> n)
{
for (int i = 0; i < n; i++){
scanf("%lf%lf%lf", &p[i].x, &p[i].y, &p[i].z);
scanf("%lf%lf%lf", &p[i + n].x, &p[i + n].y, &p[i + n].z);
}
for (int i = 0; i < 2 * n; i++){
for (int j = i + 1; j < 2 * n; j++){
dis[i][j] = dis[j][i] = dist(p[i], p[j]);
}
}
double l = 0, r = 1e10;
while (dcmp(r - l)>0){
double mid = (l + r) / 2;
if (judge(mid)) l = mid;
else r = mid;
}
int tmp = l * 1000;
double ans = tmp / 1000.0;
printf("%.3lf\n", ans);
}
return 0;
}

ZOJ3717 Balloon(2-SAT)的更多相关文章

  1. 多边形碰撞 -- SAT方法

    检测凸多边形碰撞的一种简单的方法是SAT(Separating Axis Theorem),即分离轴定理. 原理:将多边形投影到一条向量上,看这两个多边形的投影是否重叠.如果不重叠,则认为这两个多边形 ...

  2. HDOJ 1004 Let the Balloon Rise

    Problem Description Contest time again! How excited it is to see balloons floating around. But to te ...

  3. hdu 1004 Let the Balloon Rise

    Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  4. 【ZOJ1003】Crashing Balloon(DFS)

    Crashing Balloon Time Limit: 2 Seconds      Memory Limit: 65536 KB On every June 1st, the Children's ...

  5. Let the Balloon Rise

    Problem Description Contest time again! How excited it is to see balloons floating around. But to te ...

  6. 杭电1170 Balloon Comes

    Problem Description The contest starts now! How excited it is to see balloons floating around. You, ...

  7. Let the Balloon Rise 分类: HDU 2015-06-19 19:11 7人阅读 评论(0) 收藏

    Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  8. HDU 1004 Let the Balloon Rise map

    Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  9. HDU1004 Let the Balloon Rise(map的简单用法)

    Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...

随机推荐

  1. UIViewAnimationOptions swift 2

    UIView.animateWithDuration(0.5, delay: 0.5, usingSpringWithDamping: 0.5, initialSpringVelocity: 0.0, ...

  2. r

    http://vgoulet.act.ulaval.ca/en/emacs/mac/ mean() 均值 sd()标准差 http://www.walware.de/it/downloads/stat ...

  3. .Net码农学Android---五分钟了解布局

    在android中应用的界面是以xml来组织的,这一点和WPF相似,通过配置xml文件我们可以灵活的构建出你自己想要的界面. 而在所有的xml界面文件中,根节点必须是布局,即先有布局,然后在布局中组织 ...

  4. Oracle HS (Heterogeneous Services)深入解析 及协同Gateway工作流程(转)

    异构的数据源同Oracle Database做交互原理. 图1 上图是一张Oracle 异构连接处理的架构图,其中我们可以看到主要的非数据源模块包括有HS(Heterogeneous Service) ...

  5. javascript面向对象和原型

    /* //工厂模式 function createObject(name,age){ var obj = new Object();//新建一个对象 obj.name=name;//新建对象的属性 o ...

  6. Android 文档之viewAnimator

    一.结构 public class ViewAnimator extends FrameLayout java.lang.Object android.view.View android.view.V ...

  7. jquery.form的使用

    插件API http://malsup.com/jquery/form/#api Jquery.form.js是支持文件异步上传的插件,jq插件自然基本前提当然是要引用Jquery.js 1.0 基本 ...

  8. phpstorm自动对齐数组=>,自动加空格

    写完代码后可以点菜单中code-reformat code,快捷键是option+command+L

  9. [转]IIS部署托管管道模式的集成和经典区别

    关于ESPS和SCSJ在Windows server 2008的问题总结 SCSJ出现的问题在于集成模式和经典模式的选择上,系统本身是没有问题的.我们在部署系统的时候,选择了集成模式,导致WebCon ...

  10. Qt---- 点击按钮调用另一个窗口Ui

    -------------------------------------------------- #include "subdialog.h" SubDialog::SubDi ...