一个很玄乎的问题,但听到2-SAT之后就豁然开朗了。题目的意思是这样的,给你n个点群,每个点群里面有两个点,你要在每个点群里面选一个点,以这些点做半径为r的圆,然后r会有一个最大值,问的就是怎么选这些点使得r最大。

2-SAT就是对于每个变量有一些制约的关系   a->b 表示选了a就就要选b。然后我们二分这个半径,对于两点间距离<2*r的点(a,b)选了a就不能选b,选了b就不能选a,以此构图。然后跑一次强连通分量。最后判是否有解的时候就是判对于两个属于相同点群的点,它们不能处于同一强连通分量下。写的时候跪的点实在太多了,数组越界呀,强连通写错呀,精度呀,这样的题太坑爹了- -0

#pragma warning(disable:4996)
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<vector>
#define ll long long
#define maxn 220
#define eps 1e-8
using namespace std; struct Point
{
double x, y, z;
Point(double xi, double yi, double zi) :x(xi), y(yi), z(zi){}
Point(){}
}p[maxn * 2]; double dist(Point a, Point b){
return sqrt((a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y) + (a.z - b.z)*(a.z - b.z));
} double dis[maxn * 2][maxn * 2]; int low[maxn * 2];
int pre[maxn * 2];
int dfs_clock;
int sta[maxn * 2];
int st;
int sccno[maxn * 2];
int n;
vector<int> G[maxn * 2];
int scc_cnt; int dcmp(double x){
return (x > eps) - (x < -eps);
} void dfs(int u){
low[u] = pre[u] = ++dfs_clock;
sta[++st] = u;
for (int i = 0; i < G[u].size(); i++){
int v = G[u][i];
if (!pre[v]){
dfs(v);
low[u] = min(low[u], low[v]);
}
else if (!sccno[v]){
low[u] = min(low[u], pre[v]);
}
}
if (low[u] == pre[u]){
++scc_cnt;
while (1){
int x = sta[st]; st--;
sccno[x] = scc_cnt;
if (x == u) break;
}
}
} bool judge(double x)
{
memset(sccno, 0, sizeof(sccno));
memset(pre, 0, sizeof(pre));
memset(low, 0, sizeof(low));
st = 0; dfs_clock = 0;
scc_cnt = 0;
for (int i = 0; i <= 2 * n; i++) G[i].clear(); for (int i = 0; i < n; i++){
for (int j = i + 1; j < n; j++){
if (dcmp(dis[i][j] - 2 * x) < 0){
G[i].push_back(j + n);
G[j].push_back(i + n);
}
if (dcmp(dis[i][j + n] - 2 * x) < 0){
G[i].push_back(j);
G[j + n].push_back(i + n);
}
if (dcmp(dis[i + n][j] - 2 * x) < 0){
G[i + n].push_back(j + n);
G[j].push_back(i);
}
if (dcmp(dis[i + n][j + n] - 2 * x) < 0){
G[i + n].push_back(j);
G[j + n].push_back(i);
}
}
}
for (int i = 0; i < 2 * n; i++){
if (!pre[i]) dfs(i);
}
for (int i = 0; i < n; i++){
if (sccno[i] == sccno[i + n]) return false;
}
return true;
} int main()
{
while (cin >> n)
{
for (int i = 0; i < n; i++){
scanf("%lf%lf%lf", &p[i].x, &p[i].y, &p[i].z);
scanf("%lf%lf%lf", &p[i + n].x, &p[i + n].y, &p[i + n].z);
}
for (int i = 0; i < 2 * n; i++){
for (int j = i + 1; j < 2 * n; j++){
dis[i][j] = dis[j][i] = dist(p[i], p[j]);
}
}
double l = 0, r = 1e10;
while (dcmp(r - l)>0){
double mid = (l + r) / 2;
if (judge(mid)) l = mid;
else r = mid;
}
int tmp = l * 1000;
double ans = tmp / 1000.0;
printf("%.3lf\n", ans);
}
return 0;
}

ZOJ3717 Balloon(2-SAT)的更多相关文章

  1. 多边形碰撞 -- SAT方法

    检测凸多边形碰撞的一种简单的方法是SAT(Separating Axis Theorem),即分离轴定理. 原理:将多边形投影到一条向量上,看这两个多边形的投影是否重叠.如果不重叠,则认为这两个多边形 ...

  2. HDOJ 1004 Let the Balloon Rise

    Problem Description Contest time again! How excited it is to see balloons floating around. But to te ...

  3. hdu 1004 Let the Balloon Rise

    Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  4. 【ZOJ1003】Crashing Balloon(DFS)

    Crashing Balloon Time Limit: 2 Seconds      Memory Limit: 65536 KB On every June 1st, the Children's ...

  5. Let the Balloon Rise

    Problem Description Contest time again! How excited it is to see balloons floating around. But to te ...

  6. 杭电1170 Balloon Comes

    Problem Description The contest starts now! How excited it is to see balloons floating around. You, ...

  7. Let the Balloon Rise 分类: HDU 2015-06-19 19:11 7人阅读 评论(0) 收藏

    Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  8. HDU 1004 Let the Balloon Rise map

    Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Oth ...

  9. HDU1004 Let the Balloon Rise(map的简单用法)

    Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...

随机推荐

  1. wpf mvvm MenuItem的Command事件

    这是一个事件的辅助类,可以通过它实现MenuItem的Command事件 public class MyCommands : Freezable, ICommand, ICommandSource { ...

  2. JavaWeb之Servlet: ServletConfig 与 ServletContext

    ServletConfig对象 什么是ServletConfig对象 ServletConfig对象,叫Servlet配置对象.主要用于加载配置文件的初始化参数. 创建时机 ServletConfig ...

  3. JS把函数当作参数传递

    getDescPage("commonPage","/page/common/tips/tips.html",init()); $("#"+ ...

  4. CentOS 7 + nginx + uwsgi + web2py (502 bad gateway nginx)

    Web2py开发包中自带的setup-web2py-nginx-uwsgi-centos64.sh脚本, 只能运行在CentOS 6.4中使用, 如果直接在CentOS 7 中使用该脚本布署后, 访问 ...

  5. hdu 1908 Double Queue

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1908 Double Queue Description The new founded Balkan ...

  6. Android之使用HTTP协议的Get/Post方式向服务器提交数据

    1.Get方式 方法:通过拼接url在url后添加相应的数据,如:http://172.22.35.112:8080/videonews/GetInfoServlet?title=霍比特人&t ...

  7. 在ASP.NET中实现OAuth2.0(一)之了解OAuth

    1.什么是OAuth2.0 是一个开放授权标准,允许用户让第三方应用访问该用户在某一个网站或平台上的私密资源(如照片.视频.联系人等),而无须将用户名和密码提供给第三方应用 2.OAuth2.0授权模 ...

  8. 自学asp.net mvc(三)

    1.将前台框架的登录页面代码,复制到Login.cshtml. 2.将文本框替换. 3.缓存机制. 4.类图

  9. 关于VS2010error RC2170 : bitmap file res\tmp1.bmp is not in 3.00 format

      我们有时候向VS中的程序插入图片,会出现如下错误: 这是VS的一个bug,对于不能识别的资源,添加的时候,VS会弹出一个对话框让你填类型,这个类型其实是字符串表示,而不是像内置类型,例如整数. 解 ...

  10. Lua与C++交互初探之Lua调用C++

    Lua与C++交互初探之Lua调用C++ 上一篇我们已经成功将Lua的运行环境搭建了起来,也成功在C++里调用了Lua函数.今天我来讲解一下如何在Lua里调用C++函数. Lua作为一个轻量级脚本语言 ...