poj 3621(最优比率环)
题目链接:http://poj.org/problem?id=3621
思路:之前做过最小比率生成树,也是属于0/1整数划分问题,这次碰到这道最优比率环,很是熟悉,可惜精度没控制好,要不就是wa,要不就是tle,郁闷啊!实在是懒得码字,直接copy吧:
题目的意思是:求一个环的{点权和}除以{边权和},使得那个环在所有环中{点权和}除以{边权和}最大。
令在一个环里,点权为v[i],对应的边权为e[i],
即要求:∑(i=1,n)v[i]/∑(i=1,n)e[i]最大的环(n为环的点数),
设题目答案为ans,
即对于所有的环都有 ∑(i=1,n)(v[i])/∑(i=1,n)(e[i])<=ans
变形得ans* ∑(i=1,n)(e[i])>=∑(i=1,n)(v[i])
再得 ∑(i=1,n)(ans*e[i]-v[i]) >=0
稍分析一下,就有:
当k<ans时,就存在至少一个环∑(i=1,n)(k*e[i]-v[i])<0,即有负权回路(边权为k*e[i]-v[i]);
当k>=ans时,就对于所有的环∑(i=1,n)(k*e[i]-v[i])>=0,即没有负权回路。
然后我们就可以使新的边权为k*e[i]-v[i],用spfa来判断付权回路,二分ans。
http://paste.ubuntu.com/5932023/
poj 3621(最优比率环)的更多相关文章
- poj 3621(最优比率环)
Sightseeing Cows Farmer John has decided to reward his cows for their hard work by taking them on a ...
- POJ 3621-Sightseeing Cows-最优比率环|SPFA+二分
最优比率环问题.二分答案,对于每一个mid,把节点的happy值归类到边上. 对于每条边,用mid×weight减去happy值,如果不存在负环,说明还可以更大. /*---------------- ...
- POJ 3621 最优比率生成环
题意: 让你求出一个最优比率生成环. 思路: 又是一个01分化基础题目,直接在jude的时候找出一个sigma(d[i] * x[i])大于等于0的环就行了,我是用SPFA跑最长路 ...
- Sightseeing Cows(最优比率环)
Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8915 Accepted: 3000 ...
- [转]01分数规划算法 ACM 二分 Dinkelbach 最优比率生成树 最优比率环
01分数规划 前置技能 二分思想最短路算法一些数学脑细胞? 问题模型1 基本01分数规划问题 给定nn个二元组(valuei,costi)(valuei,costi),valueivaluei是选择此 ...
- 【poj3621】最优比率环
题意: 给定n个点,每个点有一个开心度F[i],每个点有m条单向边,每条边有一个长度d,要求一个环,使得它的 开心度的和/长度和 这个比值最大.n<=1000,m<=5000 题解: 最优 ...
- poj 3621最优比例生成环(01分数规划问题)
/* 和求最小生成树差不多 转载思路:http://www.cnblogs.com/wally/p/3228171.html 思路:之前做过最小比率生成树,也是属于0/1整数划分问题,这次碰到这道最优 ...
- POJ 3621:Sightseeing Cows(最优比率环)
http://poj.org/problem?id=3621 题意:有n个点m条有向边,每个点有一个点权val[i],边有边权w(i, j).找一个环使得Σ(val) / Σ(w)最大,并输出. 思路 ...
- POJ 3621 Sightseeing Cows (最优比率环 01分数划分)
题意: 给定L个点, P条边的有向图, 每个点有一个价值, 但只在第一经过获得, 每条边有一个花费, 每次经过都要付出这个花费, 在图中找出一个环, 使得价值之和/花费之和 最大 分析: 这道题其实并 ...
随机推荐
- TFS使用指南
上一篇文章已经简略介绍过TFS的安装与管理,本篇文章主要描述一下我个人在工作过程中使用TFS的一些指南与建议.本章内容预览: 1. 项目计划与跟踪 经常有很多朋友在日常聊天中抱怨做计划很无畏,因为计 ...
- 在HTML中添加目录
<a href="#num1">跳转到第一章</a><div id="num1">第一章</div>用a的hre ...
- shell操作文件的几条命令:删除最后一列、删除第一行、diff等
删除文件第一行: sed '1d' filename 删除文件最后一列: awk '{print $NF}' filename awk删除重复行的命令:awk '{if (!seen[$0]++) { ...
- python中fork()函数生成子进程分析
python的os module中有fork()函数用于生成子进程,生成的子进程是父进程的镜像,但是它们有各自的地址空间,子进程复制一份父进程内存给自己,两个进程之 间的执行是相互独立的,其执行顺序可 ...
- 字符串流sstream[part3/使用字符串流进行安全的类型转换]
参考: http://blog.163.com/zhuandi_h/blog/static/180270288201291710222975/ http://www.cnblogs.com/games ...
- OpenCms 集成外部Solr Server
OpenCms默认是以内嵌的Solr作为全文搜索服务的,不过我们也可以配置一个独立的Solr搜索服务器 设置外部Solr Server 1. 从Solr 官方站点http://lucene.apach ...
- 对MVC的理解
摘要:本文主要谈到了对PHP开发中MVC开发模式的理解. 当用户通过url触发命令时,例如url=http://control.blog.sina.com.cn/admin/article/artic ...
- java笔记之变量的存储方式
1.java变量存储域 java变量的存储区域主要放在以下几个地方: (1)寄存器:可以说是最快的存储区,在C/C++中可以声明寄存器变量,但是在java中不能声明寄存器变量,只是编译器在编译时确定. ...
- 使用CSS时间打点的Loading效果的教程
基于box-shadow实现的打点效果 理论上,box-shadow可以实现任意的图形效果,自然我们可以利用box-shadow生成我们的点效果,然后通过animation控制不同时间点点的数目就可以 ...
- BZOJ 1012: [JSOI2008]最大数maxnumber 线段树
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1012 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作.语法:Q L 功能: ...