求最长回文子串——Manacher算法
回文串包括奇数长的和偶数长的,一般求的时候都要分情况讨论,这个算法做了个简单的处理把奇偶情况统一了。算法的基本思路是这样的,把原串每个字符中间用一个串中没出现过的字符分隔开来(统一奇偶),用一个数组p[ i ]记录以 str[ i ] 为中间字符的回文串向右能匹配的长度。先看个例子
原串: w a a b w s w f d
新串(str): # w # a # a # b # w # s # w # f # d #
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
p数组: 1 2 1 2 3 2 1 2 1 2 1 4 1 2 1 2 1 2 1
由p数组的性质,新串中以str[i]为中间字符的回文串的长度为p[i]-1(可以对照p[11]这个位置,p[i]-1本身表示对称半径,但是实际上去掉#以后,p[i]-1就是回文串长度),以#为中间字符的就是长度为偶数的,以非#号为中间字符的就是长度为奇数的,那么怎么求p[ ]数组呢?
从左到右计算(0~str.length),也就是计算p[i]时,p[0.....i-1] 都已经计算出来了,并且用一个变量mx记录当前检测出的回文串的右侧最大位置 max{ k+p[ k ] } (k=0.....i-1),用id记录取最大值时的k。
上面的这个截图是很多人都用过的,需要注意的是, 两张图分别表示了当前点i<mx时的两种情况:
1) 当前点i关于id的对称点j, 以j为中心的回文串的左边界不小于id-p[id],根据回文串的对称性, 这就意味着i的回文串长度是跟j是一样的, 所以有p[i] = p[j] = p[2*id-i];
2) 如果以j为中心的回文串的左边界小于id-p[id],则只能确保p[i]>=mx-i, 至于p[i]的值具体为多少,还需要检测mx后面的位置才能确定出来。
所以就有了下面的这个关键代码,理解了这部分,整个算法就好理解了。
if( mx > i ) p[i] = MIN( p[*id-i], mx-i );
完整代码如下:
#include<iostream>
#include<string>
#include<stdlib.h>
using namespace std; char cArray[];
int p[]; int manacher(int length)
{
int mx = ;
int id = ;
int maxLength = ; for(int i=; i<length; ++i)
{
if(mx>i)
{
p[i] = min(p[*id-i], mx-i);
}
else
{
p[i] = ;
} while( (i-p[i]+)>= && (i+p[i]-)<length && cArray[i-p[i]+]==cArray[i+p[i]-] )
{
p[i] = p[i] + ;
} p[i]--; if(i+p[i]- > mx)
{
mx = i+p[i]-;
id = i;
} if(maxLength < p[i]-)
{
maxLength = p[i]-;
}
} return maxLength;
} int main()
{
//string input = "waabwswfd";
string input = "wawbbbwasaw";
int k = ;
for(int i=; i<input.size(); ++i)
{
cArray[k++] = '#';
cArray[k++] = input.at(i);
}
cArray[k++] = '#';
int ans = manacher(k);
cout << ans << endl;
}
简化以后的代码
#include<iostream>
#include<string>
#include<cstdlib>
#include<algorithm> using namespace std; char cArray[];
int p[]; int manacher(int length)
{
int mx = ;
int id = ;
int maxLength = ; for (int i = ; i<length; ++i)
{
if (mx>i)
{
p[i] = min(p[ * id - i], mx - i);
}
else
{
p[i] = ;
} while ((i - p[i]) >= && (i + p[i])<length && cArray[i - p[i]] == cArray[i + p[i]])
{
p[i] = p[i] + ;
} p[i]--; if (i + p[i] > mx)
{
mx = i + p[i];
id = i;
} if (maxLength < p[i])
{
maxLength = p[i];
}
} return maxLength;
} int main()
{
//string input = "waabwswfd";
string input = "wawbbbwasaw";
int k = ;
for (int i = ; i<input.size(); ++i)
{
cArray[k++] = '#';
cArray[k++] = input.at(i);
}
cArray[k++] = '#';
int ans = manacher(k);
cout << ans << endl;
}
求最长回文子串——Manacher算法的更多相关文章
- 九度OJ 1528 最长回文子串 -- Manacher算法
题目地址:http://ac.jobdu.com/problem.php?pid=1528 题目描述: 回文串就是一个正读和反读都一样的字符串,比如"level"或者"n ...
- lintcode最长回文子串(Manacher算法)
题目来自lintcode, 链接:http://www.lintcode.com/zh-cn/problem/longest-palindromic-substring/ 最长回文子串 给出一个字符串 ...
- 最长回文子串—Manacher 算法 及 python实现
最长回文子串问题:给定一个字符串,求它的最长回文子串长度.如果一个字符串正着读和反着读是一样的,那它就是回文串. 给定一个字符串,求它最长的回文子串长度,例如输入字符串'35534321',它的最 ...
- 51nod1089 最长回文子串 manacher算法
0. 问题定义 最长回文子串问题:给定一个字符串,求它的最长回文子串长度. 如果一个字符串正着读和反着读是一样的,那它就是回文串.下面是一些回文串的实例: 12321 a aba abba aaaa ...
- hihocoder #1032 : 最长回文子串 Manacher算法
题目链接: https://hihocoder.com/problemset/problem/1032?sid=868170 最长回文子串 时间限制:1000ms内存限制:64MB 问题描述 小Hi和 ...
- 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- HiHo 1032 最长回文子串 (Manacher算法求解)
/** * 求解最长回文字串,Manacher算法o(n)求解最长回文子串问题 **/ #include<cstdio> #include<cstdlib> #include& ...
- hihoCoder #1032 : 最长回文子串 [ Manacher算法--O(n)回文子串算法 ]
传送门 #1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相 ...
- 最长回文子串Manacher算法模板
Manacher算法能够在O(N)的时间复杂度内得到一个字符串以任意位置为中心的回文子串.其算法的基本原理就是利用已知回文串的左半部分来推导右半部分. 首先,在字符串s中,用rad[i]表示第i个字符 ...
随机推荐
- 240. Search a 2D Matrix II
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...
- ES6—解构赋值
1.什么是解构赋值 ES6允许按照预定的模式,从数组.对象中提取值,对变量进行赋值. 我们直接用例子说明. 2. 数组的解构赋值 数组传统的变量赋值: var arr=[1,2,3]; ...
- C++ Primer : 第十三章 : 拷贝控制之拷贝、赋值与销毁
拷贝构造函数 一个构造函数的第一个参数是自身类类型的引用,额外的参数(如果有)都有默认值,那么这个构造函数是拷贝构造函数.拷贝构造函数的第一个参数必须是一个引用类型. 合成的拷贝构造函数 在我们没 ...
- 【转】beancopy的替代方案
链接:http://jingyan.baidu.com/article/215817f7d55b871edb14235b.html 最近在项目中接触到了BeanUtils.copyProperties ...
- 求10000以内n的阶乘
总时间限制: 5000ms 内存限制: 655360kB 描述 求10000以内n的阶乘. 输入 只有一行输入,整数n(0<=n<=10000). 输出 一行,即n!的值. 样例输入 ...
- js获取客户端操作系统
function detectOS() { var sUserAgent = navigator.userAgent; var isWin = (navigator.platform == " ...
- java 类型转json格式
json-lib-2.4-jdk15.jar List<People> mapPersonTypes = null; private JSONArray json_mapPersonTyp ...
- dl,dt,dd,ul,li,ol区别
dl.dt.dd也是列表项,不过它们被忽视得比较厉害,人们只知道ul.ol.li,却经常漠视它们的存在,其实有时候,dl.dt.dd也是非常好用的,这两个家族是近亲,很多地方都是一模一样. dl类似u ...
- linux服务之varnish
https://www.varnish-cache.org/installation/redhatvarnish是现在很流行的一个HTTP(80)缓存加速解决方案,varnish是基于内存的缓存加速. ...
- shell之条件表达式
conditional expressions are used by the [[ compound command and the test and [ builtin commands. ari ...