Trie树

Trie树也称字典树,因为其效率很高,所以在在字符串查找、前缀匹配等中应用很广泛,其高效率是以空间为代价的。

一.Trie树的原理

利用串构建一个字典树,这个字典树保存了串的公共前缀信息,因此可以降低查询操作的复杂度。

下面以英文单词构建的字典树为例,这棵Trie树中每个结点包括26个孩子结点,因为总共有26个英文字母(假设单词都是小写字母组成)。

则可声明包含Trie树的结点信息的结构体:

#define MAX 26

typedef struct TrieNode               //Trie结点声明 
{
bool isStr; //标记该结点处是否构成单词
struct TrieNode *next[MAX]; //儿子分支
}Trie;

其中next是一个指针数组,存放着指向各个孩子结点的指针。

如给出字符串"abc","ab","bd","dda",根据该字符串序列构建一棵Trie树。则构建的树如下:

Trie树的根结点不包含任何信息,第一个字符串为"abc",第一个字母为'a',因此根结点中数组next下标为'a'-97的值不为NULL,其他同理,构建的Trie树如图所示,红色结点表示在该处可以构成一个单词。很显然,如果要查找单词"abc"是否存在,查找长度则为O(len),len为要查找的字符串的长度。而若采用一般的逐个匹配查找,则查找长度为O(len*n),n为字符串的个数。显然基于Trie树的查找效率要高很多。

但是却是以空间为代价的,比如图中每个结点所占的空间都为(26*4+1)Byte=105Byte,那么这棵Trie树所占的空间则为105*8Byte=840Byte,而普通的逐个查找所占空间只需(3+2+2+3)Byte=10Byte。

二.Trie树的操作

在Trie树中主要有3个操作,插入、查找和删除。一般情况下Trie树中很少存在删除单独某个结点的情况,因此只考虑删除整棵树。

1.插入

假设存在字符串str,Trie树的根结点为root。i=0,p=root。

1)取str[i],判断p->next[str[i]-97]是否为空,若为空,则建立结点temp,并将p->next[str[i]-97]指向temp,然后p指向temp;

若不为空,则p=p->next[str[i]-97];

2)i++,继续取str[i],循环1)中的操作,直到遇到结束符'\0',此时将当前结点p中的isStr置为true。

2.查找

假设要查找的字符串为str,Trie树的根结点为root,i=0,p=root

1)取str[i],判断判断p->next[str[i]-97]是否为空,若为空,则返回false;若不为空,则p=p->next[str[i]-97],继续取字符。

2)重复1)中的操作直到遇到结束符'\0',若当前结点p不为空并且isStr为true,则返回true,否则返回false。

3.删除

删除可以以递归的形式进行删除。

测试程序:

#include <iostream>
using namespace std; #define MAX 26
typedef struct TrieNode
{
bool isStr; //标记该节点处是否构成单词
struct TrieNode *next[MAX];//儿子分支
}Trie; void insert(Trie *root,const char *s)
{
if (root==nullptr||*s=='\0')
{
return;
}
int i;
Trie *p = root;
while (*s!='\0')
{
if (p->next[*s-'a']==nullptr)
{
Trie *temp = (Trie*)malloc(sizeof(Trie));
for (i = ; i < MAX;i++)
{
temp->next[i] = nullptr;
}
temp->isStr = false;
p->next[*s - 'a'] = temp;
p = p->next[*s - 'a'];
}
else
{
p = p->next[*s - 'a'];
}
s++;
}
p->isStr = true;//单词结束的位置标记此处可以构成一个单词
} int search(Trie* root, const char *s)
{
Trie *p = root;
while (p!=nullptr&&*s!='\0')
{
p = p->next[*s-'a'];
s++;
}
return (p!=nullptr&&p->isStr==true);
} void del(Trie *root)
{
for (int i = ; i < MAX;i++)
{
if (root->next[i]!=nullptr)
{
del(root->next[i]);
}
}
free(root);
} int main(int argc, char *argv[])
{
int n, m;//n为建立Trie树输入的单词数;m为要查找的单词数
char s[];
Trie *root = (Trie*)malloc(sizeof(Trie));
for (int i = ; i < MAX;++i)
{
root->next[i] = nullptr;
}
root->isStr = false;
cout << "输入n:\n";
cin >> n;
//getchar();
cout << "输入"<<n<<"个单词:\n";
for (int i = ; i < n;++i)
{
cin >> s;
insert(root, s);
}
while (scanf("%d",&m)!=EOF)
{
cout << "输入m个单词查找,并显示结果:\n";
for (int i = ; i < m;++i)
{
cin >> s;
if (search(root,s)==)
{
cout << "YES\n";
}
else
{
cout << "NO\n";
}
}
}
del(root);
return ;
} //int main()
//{
// char str='a';
// cout << (int)str << endl;
//}

Trie树也称字典树的更多相关文章

  1. 字典树基础进阶全掌握(Trie树、01字典树、后缀自动机、AC自动机)

    字典树 概述     字典树,又称单词查找树,Trie树,是一种树形结构,是一种哈希树的变种.典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计.它 ...

  2. 012-数据结构-树形结构-哈希树[hashtree]、字典树[trietree]、后缀树

    一.哈希树概述 1.1..其他树背景 二叉排序树,平衡二叉树,红黑树等二叉排序树.在大数据量时树高很深,我们不断向下找寻值时会比较很多次.二叉排序树自身是有顺序结构的,每个结点除最小结点和最大结点外都 ...

  3. 字典树&&01字典树专题&&对字典树的理解

    对于字典树和01字典树的一点理解: 首先,字典树建树的过程就是按照每个数的前缀来的,如果你要存储一个全小写字母字符串,那么这个树每一个节点最多26个节点,这样的话,如果要找特定的单词的话,按照建树的方 ...

  4. [LeetCode] Implement Trie (Prefix Tree) 实现字典树(前缀树)

    Implement a trie with insert, search, and startsWith methods. Note:You may assume that all inputs ar ...

  5. POJ 2001 Shortest Prefixes 【 trie树(别名字典树)】

    Shortest Prefixes Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15574   Accepted: 671 ...

  6. [LeetCode] 208. Implement Trie (Prefix Tree) 实现字典树(前缀树)

    Implement a trie with insert, search, and startsWith methods. Example: Trie trie = new Trie(); trie. ...

  7. 【统计难题】【HDU - 1251】【map打表或字典树】【字典树模板】

    思路 题意:题目为中文题,这里不再过多阐述. 思路1:可以在读入单词表的过程中将单词分解,用map将它一 一记录 思路2:利用字典树,这个方法较快些,下面代码中会分别给出数组和结构体指针两种形式的字典 ...

  8. Trie树-0/1字典树-DFS-1624. 最大距离

    2020-03-18 20:45:47 问题描述: 两个二进制串的距离是去掉最长公共前缀的长度之和.比如: 1011000和1011110的最长公共前缀是1011, 距离就是 len("00 ...

  9. Implement Trie (Prefix Tree)实现字典树

    [抄题]: Implement a trie with insert, search, and startsWith methods. Note:You may assume that all inp ...

随机推荐

  1. Difference between Pragma and Cache-control headers?

    Pragma is the HTTP/1.0 implementation and cache-control is the HTTP/1.1 implementation of the same c ...

  2. testNG参数传递方式

    testNG传参数的两种方式(xml文件,@DataProvider) 使用testng.xml设置参数 参数在xml文件中可以在suite级别定义,也可以在test级别定义:testNG会尝试先在包 ...

  3. 解决 iReport 生成 pdf 时显示不出中文的问题

    有没有遇到这样的情况:在使用 iReport 做报表时,用pdf预览显示不出中文? 解决步骤是这样的: 1.加入jar包 下载两个jar包:itextasian.jar 和 itext-x.y.jar ...

  4. 利用SOLR搭建企业搜索平台 之——配置文件

    运行solr是个很简单的事,如何让solr高效运行你的项目,这个就不容易了.要考虑的因素太多.这里很重要一个就是对solr的配置要了解.懂得配置文件每个配置项的含义,这样操作起来就会如鱼得水! 在so ...

  5. MySQL 跳过同步错误方法

    最近MySQL 遇到了同步问题,现整理一下常遇到的错误的解决方法,备用. 方法一:手动设置动态参数 sql_slave_skip_counter 我常用的脚本: stop slave sql_thre ...

  6. Android Touch(4)我不知道的MotionEvent(*)

    1,MotionEvent的复制或构造 有时候可能要保存一个MotionEvent, 它的构造方法是匿名的,不能直接创建,对外提供的获取对象的接口是静态的obtain方法,可以从一个MotionEve ...

  7. Hbase源码分析:Hbase UI中Requests Per Second的具体含义

    Hbase源码分析:Hbase UI中Requests Per Second的具体含义 让运维加监控,被问到Requests Per Second(见下图)的具体含义是什么?我一时竟回答不上来,虽然大 ...

  8. HibernateTools的使用

    1. 到 Hibernate.org官网上 下载最新版的 Hibernate Tools,我用的是 HibernateTools-3.2.4.GA版 2. 将 下载下来的压缩包解压缩,里面会有 plu ...

  9. 初步窥探Git

    码农之路恒久远,学习向上是真谛啊!在学习的过程中,相信大家或多或少都接触到Git这个东东.它到底是什么呢,有什么作用呢,为什么它会那么火呢?带着这些一连串的疑问,决心去揭开它的庐山真面目. 在软件开发 ...

  10. AWS 之Load Balance篇

    public class CreateELB { /// <summary> /// 连接AWS服务器 /// </summary> /// <param name=&q ...