The Doors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 5210   Accepted: 2124

Description

You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length.

Input

The input data for the illustrated chamber would appear as follows.

2

4 2 7 8 9

7 3 4.5 6 7

The first line contains the number of interior walls. Then there is a
line for each such wall, containing five real numbers. The first number
is the x coordinate of the wall (0 < x < 10), and the remaining
four are the y coordinates of the ends of the doorways in that wall. The
x coordinates of the walls are in increasing order, and within each
line the y coordinates are in increasing order. The input file will
contain at least one such set of data. The end of the data comes when
the number of walls is -1.

Output

The
output should contain one line of output for each chamber. The line
should contain the minimal path length rounded to two decimal places
past the decimal point, and always showing the two decimal places past
the decimal point. The line should contain no blanks.

Sample Input

1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1

Sample Output

10.00
10.06

Source

 
 
 
 
总共4*n+1个点个点。
根据线段交去判断会不会冲突,可以直接连的就建立一条路径。
 
然后求最短路。
因为点很小,所以无论哪种最短路算法都可使用。
 
 
/************************************************************
* Author : kuangbin
* Email : kuangbin2009@126.com
* Last modified : 2013-07-14 10:47
* Filename : POJ1556TheDoors.cpp
* Description :
* *********************************************************/ #include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h> using namespace std; const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < ) return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
};
//判断线段相交
bool inter(Line l1,Line l2)
{
return
max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
sgn((l2.s-l1.s)^(l1.e-l1.s))*sgn((l2.e-l1.s)^(l1.e-l1.s)) <= &&
sgn((l1.s-l2.s)^(l2.e-l2.s))*sgn((l1.e-l2.s)^(l2.e-l2.s)) <= ;
}
double dist(Point a,Point b)
{
return sqrt((b-a)*(b-a));
}
const int MAXN = ;
Line line[MAXN];
double dis[MAXN][MAXN];
const double INF = 1e20;
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
double x,y1,y2,y3,y4;
while(scanf("%d",&n) == )
{
if(n == -) break;
for(int i = ;i <= n;i++)
{
scanf("%lf%lf%lf%lf%lf",&x,&y1,&y2,&y3,&y4);
line[*i-] = Line(Point(x,y1),Point(x,y2));
line[*i] = Line(Point(x,y3),Point(x,y4));
}
for(int i = ;i <= *n+;i++)
for(int j = ;j <= *n+;j++)
{
if(i == j)dis[i][j] = ;
else dis[i][j] = INF;
}
for(int i = ;i <= *n;i++)
{
int lid = (i+)/;
bool flag = true;
Point tmp;
if(i&)tmp = line[(i+)/].s;
else tmp = line[(i+)/].e;
for(int j = ;j < lid;j++)
if(inter(line[*j-],Line(Point(,),tmp)) == false
&& inter(line[*j],Line(Point(,),tmp)) == false)
flag = false;
if(flag)dis[][i] =dis[i][] = dist(Point(,),tmp);
flag = true;
for(int j = lid+;j <= n;j++)
if(inter(line[*j-],Line(Point(,),tmp)) == false
&& inter(line[*j],Line(Point(,),tmp)) == false)
flag = false;
if(flag)dis[i][*n+] =dis[*n+][i] = dist(Point(,),tmp);
}
for(int i = ;i <= *n;i++)
for(int j = i+;j <=*n;j++)
{
int lid1 = (i+)/;
int lid2 = (j+)/;
bool flag = true;
Point p1,p2;
if(i&)p1 = line[(i+)/].s;
else p1 = line[(i+)/].e;
if(j&)p2 = line[(j+)/].s;
else p2 = line[(j+)/].e;
for(int k = lid1+;k < lid2;k++)
if(inter(line[*k-],Line(p1,p2)) == false
&& inter(line[*k],Line(p1,p2)) == false)
flag = false;
if(flag) dis[i][j] = dis[j][i] = dist(p1,p2);
}
bool flag = true;
for(int i = ;i <= n;i++)
if(inter(line[*i-],Line(Point(,),Point(,))) == false
&& inter(line[*i],Line(Point(,),Point(,))) == false)
flag = false;
if(flag)dis[][*n+] = dis[*n+][] = ;
for(int k = ;k <= *n+;k++)
for(int i = ;i <= *n+;i++)
for(int j = ;j <= *n+;j++)
if(dis[i][k] + dis[k][j] < dis[i][j])
dis[i][j] = dis[i][k] + dis[k][j];
printf("%.2lf\n",dis[][*n+]);
} return ;
}
 
 

POJ 1556 The Doors(线段交+最短路)的更多相关文章

  1. POJ 1556 The Doors(线段交+最短路)

    #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm& ...

  2. POJ 1556 The Doors 线段交 dijkstra

    LINK 题意:在$10*10$的几何平面内,给出n条垂直x轴的线,且在线上开了两个口,起点为$(0, 5)$,终点为$(10, 5)$,问起点到终点不与其他线段相交的情况下的最小距离. 思路:将每个 ...

  3. POJ 1556 - The Doors 线段相交不含端点

    POJ 1556 - The Doors题意:    在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少.    分析:        要么直达,要么 ...

  4. POJ 1556 The Doors 线段判交+Dijkstra

    The Doors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6734   Accepted: 2670 Descrip ...

  5. POJ 1556 The Doors --几何,最短路

    题意: 给一个正方形,从左边界的中点走到右边界的中点,中间有一些墙,问最短的距离是多少. 解法: 将起点,终点和所有墙的接触到空地的点存下来,然后两两之间如果没有线段(墙)阻隔,就建边,最后跑一个最短 ...

  6. POJ 1556 计算几何 判断线段相交 最短路

    题意: 在一个左下角坐标为(0,0),右上角坐标为(10,10)的矩形内,起点为(0,5),终点为(10,5),中间会有许多扇垂直于x轴的门,求从起点到终点在能走的情况下的最短距离. 分析: 既然是求 ...

  7. POJ 3304 Segments 基础线段交判断

    LINK 题意:询问是否存在直线,使得所有线段在其上的投影拥有公共点 思路:如果投影拥有公共区域,那么从投影的公共区域作垂线,显然能够与所有线段相交,那么题目转换为询问是否存在直线与所有线段相交.判断 ...

  8. POJ 1556 The Doors【最短路+线段相交】

    思路:暴力判断每个点连成的线段是否被墙挡住,构建图.求最短路. 思路很简单,但是实现比较复杂,模版一定要可靠. #include<stdio.h> #include<string.h ...

  9. 简单几何(线段相交+最短路) POJ 1556 The Doors

    题目传送门 题意:从(0, 5)走到(10, 5),中间有一些门,走的路是直线,问最短的距离 分析:关键是建图,可以保存所有的点,两点连通的条件是线段和中间的线段都不相交,建立有向图,然后用Dijks ...

随机推荐

  1. (转载)UITableView的详细讲解

    NSIndexPath类型是用来获取用户选择的indexPath,在别的函数里面,若需要知道用户选择了哪个cell,用上它可以省事很多.不必再去建全局变量section和row. NSIndexPat ...

  2. BZOJ 2151 种树

    贪心+priority_queue. #include<iostream> #include<cstdio> #include<cstring> #include& ...

  3. DESCryptoServiceProvider加密、解密

    .net名称空间System.Security.Cryptography下DESCryptoServiceProvider类为我们提供了加密和解密方法,我们只需少许代码便可实现加密和解密. 稍感不托的 ...

  4. 【转】session setup failed: NT_STATUS_LOGON_FAILURE -- 不错

    原文网址:http://blog.sina.com.cn/s/blog_5cdb72780100l26f.html samba服务器出现“session setup failed: NT_STATUS ...

  5. Spring3.0将全面支持REST

    Rod Johnson上个月底说,Spring 3.0全面支持REST风格的Web服务. "We're really seeing extensive interest and growth ...

  6. 18个jQuery Mobile开发贴士和教程

    jQuery Mobile 是 jQuery 在手机上和平板设备上的版本.jQuery Mobile 不仅会给主流移动平台带来jQuery核心库,而且会发布一个完整统一的jQuery移动UI框架.支持 ...

  7. DevExpress 14.2.3源码编译 z

    一.准备 1.准备一台Windows 8.1机器,安装VS2013 2.准备一台Windows 8.1机器,安装VS2010    XP的系统肯定不行,因为有不少的运行库不支持     Windows ...

  8. 解决:cc1.exe: sorry, unimplemented: 64-bit mode not compiled in

    在win下用Go语言的cgo时(比如下面场景)我们会用到的GCC编译器,Win下我们一般用MinGW. Golang连接Oracle数据库:win下 golang 跨平台编译 MinGW全称Minim ...

  9. win下 golang 跨平台编译

    mac 下编译其他平台的执行文件方式请参看这篇文章,http://www.cnblogs.com/ghj1976/archive/2013/04/19/3030703.html  本篇文章是win下的 ...

  10. 将cocos2dx项目从Visual Studio 迁移到 xcode

    因为Visual Studio和XCode的巨大差异性,一开始选择任何一个IDE,都会有一个迁移的过程,XCode的迁移到Visual Studio相对非常简单,不用再介绍.将项目从Visual St ...