The Doors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 5210   Accepted: 2124

Description

You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length.

Input

The input data for the illustrated chamber would appear as follows.

2

4 2 7 8 9

7 3 4.5 6 7

The first line contains the number of interior walls. Then there is a
line for each such wall, containing five real numbers. The first number
is the x coordinate of the wall (0 < x < 10), and the remaining
four are the y coordinates of the ends of the doorways in that wall. The
x coordinates of the walls are in increasing order, and within each
line the y coordinates are in increasing order. The input file will
contain at least one such set of data. The end of the data comes when
the number of walls is -1.

Output

The
output should contain one line of output for each chamber. The line
should contain the minimal path length rounded to two decimal places
past the decimal point, and always showing the two decimal places past
the decimal point. The line should contain no blanks.

Sample Input

1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1

Sample Output

10.00
10.06

Source

 
 
 
 
总共4*n+1个点个点。
根据线段交去判断会不会冲突,可以直接连的就建立一条路径。
 
然后求最短路。
因为点很小,所以无论哪种最短路算法都可使用。
 
 
/************************************************************
* Author : kuangbin
* Email : kuangbin2009@126.com
* Last modified : 2013-07-14 10:47
* Filename : POJ1556TheDoors.cpp
* Description :
* *********************************************************/ #include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h> using namespace std; const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < ) return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
};
//判断线段相交
bool inter(Line l1,Line l2)
{
return
max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
sgn((l2.s-l1.s)^(l1.e-l1.s))*sgn((l2.e-l1.s)^(l1.e-l1.s)) <= &&
sgn((l1.s-l2.s)^(l2.e-l2.s))*sgn((l1.e-l2.s)^(l2.e-l2.s)) <= ;
}
double dist(Point a,Point b)
{
return sqrt((b-a)*(b-a));
}
const int MAXN = ;
Line line[MAXN];
double dis[MAXN][MAXN];
const double INF = 1e20;
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
double x,y1,y2,y3,y4;
while(scanf("%d",&n) == )
{
if(n == -) break;
for(int i = ;i <= n;i++)
{
scanf("%lf%lf%lf%lf%lf",&x,&y1,&y2,&y3,&y4);
line[*i-] = Line(Point(x,y1),Point(x,y2));
line[*i] = Line(Point(x,y3),Point(x,y4));
}
for(int i = ;i <= *n+;i++)
for(int j = ;j <= *n+;j++)
{
if(i == j)dis[i][j] = ;
else dis[i][j] = INF;
}
for(int i = ;i <= *n;i++)
{
int lid = (i+)/;
bool flag = true;
Point tmp;
if(i&)tmp = line[(i+)/].s;
else tmp = line[(i+)/].e;
for(int j = ;j < lid;j++)
if(inter(line[*j-],Line(Point(,),tmp)) == false
&& inter(line[*j],Line(Point(,),tmp)) == false)
flag = false;
if(flag)dis[][i] =dis[i][] = dist(Point(,),tmp);
flag = true;
for(int j = lid+;j <= n;j++)
if(inter(line[*j-],Line(Point(,),tmp)) == false
&& inter(line[*j],Line(Point(,),tmp)) == false)
flag = false;
if(flag)dis[i][*n+] =dis[*n+][i] = dist(Point(,),tmp);
}
for(int i = ;i <= *n;i++)
for(int j = i+;j <=*n;j++)
{
int lid1 = (i+)/;
int lid2 = (j+)/;
bool flag = true;
Point p1,p2;
if(i&)p1 = line[(i+)/].s;
else p1 = line[(i+)/].e;
if(j&)p2 = line[(j+)/].s;
else p2 = line[(j+)/].e;
for(int k = lid1+;k < lid2;k++)
if(inter(line[*k-],Line(p1,p2)) == false
&& inter(line[*k],Line(p1,p2)) == false)
flag = false;
if(flag) dis[i][j] = dis[j][i] = dist(p1,p2);
}
bool flag = true;
for(int i = ;i <= n;i++)
if(inter(line[*i-],Line(Point(,),Point(,))) == false
&& inter(line[*i],Line(Point(,),Point(,))) == false)
flag = false;
if(flag)dis[][*n+] = dis[*n+][] = ;
for(int k = ;k <= *n+;k++)
for(int i = ;i <= *n+;i++)
for(int j = ;j <= *n+;j++)
if(dis[i][k] + dis[k][j] < dis[i][j])
dis[i][j] = dis[i][k] + dis[k][j];
printf("%.2lf\n",dis[][*n+]);
} return ;
}
 
 

POJ 1556 The Doors(线段交+最短路)的更多相关文章

  1. POJ 1556 The Doors(线段交+最短路)

    #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm& ...

  2. POJ 1556 The Doors 线段交 dijkstra

    LINK 题意:在$10*10$的几何平面内,给出n条垂直x轴的线,且在线上开了两个口,起点为$(0, 5)$,终点为$(10, 5)$,问起点到终点不与其他线段相交的情况下的最小距离. 思路:将每个 ...

  3. POJ 1556 - The Doors 线段相交不含端点

    POJ 1556 - The Doors题意:    在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少.    分析:        要么直达,要么 ...

  4. POJ 1556 The Doors 线段判交+Dijkstra

    The Doors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6734   Accepted: 2670 Descrip ...

  5. POJ 1556 The Doors --几何,最短路

    题意: 给一个正方形,从左边界的中点走到右边界的中点,中间有一些墙,问最短的距离是多少. 解法: 将起点,终点和所有墙的接触到空地的点存下来,然后两两之间如果没有线段(墙)阻隔,就建边,最后跑一个最短 ...

  6. POJ 1556 计算几何 判断线段相交 最短路

    题意: 在一个左下角坐标为(0,0),右上角坐标为(10,10)的矩形内,起点为(0,5),终点为(10,5),中间会有许多扇垂直于x轴的门,求从起点到终点在能走的情况下的最短距离. 分析: 既然是求 ...

  7. POJ 3304 Segments 基础线段交判断

    LINK 题意:询问是否存在直线,使得所有线段在其上的投影拥有公共点 思路:如果投影拥有公共区域,那么从投影的公共区域作垂线,显然能够与所有线段相交,那么题目转换为询问是否存在直线与所有线段相交.判断 ...

  8. POJ 1556 The Doors【最短路+线段相交】

    思路:暴力判断每个点连成的线段是否被墙挡住,构建图.求最短路. 思路很简单,但是实现比较复杂,模版一定要可靠. #include<stdio.h> #include<string.h ...

  9. 简单几何(线段相交+最短路) POJ 1556 The Doors

    题目传送门 题意:从(0, 5)走到(10, 5),中间有一些门,走的路是直线,问最短的距离 分析:关键是建图,可以保存所有的点,两点连通的条件是线段和中间的线段都不相交,建立有向图,然后用Dijks ...

随机推荐

  1. c#调用系统资源大集合-1

    using System; using System.Collections.Generic; using System.Text; using System.Runtime.InteropServi ...

  2. highCharts图表应用-实现多种图表的显示

    在数据统计和分析业务中,有时需要在一个图表中将柱状图.饼状图.曲线图的都体现出来,即可以从柱状图中看出具体数据.又能从曲线图中看出变化趋势,还能从饼状图中看出各部分数据比重.highCharts可以轻 ...

  3. SQL语句方法语法总结(三)

    1.时间相关的操作 月份.星期.日期.时间格式转换.第几周 ,'2014-4-1') as '时间间隔', --在所给时间上加上时间间隔,转换成DATETIME DATEDIFF(DAY,'2014- ...

  4. 详解Android动画之Frame Animation(转)

    在开始实例讲解之前,先引用官方文档中的一段话: Frame动画是一系列图片按照一定的顺序展示的过程,和放电影的机制很相似,我们称为逐帧动画.Frame动画可以被定义在XML文件中,也可以完全编码实现. ...

  5. struts2拦截器配置;拦截器栈;配置默认拦截器;拦截方法的拦截器MethodFilterInterceptor;完成登录验证

    struts2.xml 内容 <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE struts ...

  6. 【英语】Bingo口语笔记(3) - 无所谓

    what's in it for me? 这对我有什么好处?

  7. 【NYOJ-187】快速查找素数—— 枚举法、筛选法、打表法

    快速查找素数 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 现在给你一个正整数N,要你快速的找出在2.....N这些数里面所有的素数. 输入 给出一个正整数数N(N ...

  8. Fidder 监控WCF

    Client端配置 <?xml version="1.0" encoding="utf-8" ?> <configuration> &l ...

  9. myeclipse9 struts2配置

    引用struts2所用到的jar web.xml配置如下 <?xml version="1.0" encoding="UTF-8"?> <we ...

  10. SqlDataReader对象的NextResult方法读取存储过程多个结果集

    如上图,我这里有返回4个记录集,分别表示 发送的总数,成功数,失败数,以及所有的记录集,那么我怎么去获取呢? 如果我第二个记录集 第三个记录集 都是多行的话,怎么办?可以参考下面这张图