Problem Link:

http://oj.leetcode.com/problems/word-ladder-ii/

Basically, this problem is same to Word Ladder I, which uses a double-direction BFS. However, the difference is that we need to keep track of all paths during the double-direction BFS in order to output all possible shortest paths from the start word to the end word. To do this, we use the build-in dictionary strucutre in python. After the BFS, we need another normal BFS from the start word following the path dictionary, and return all paths reaching the end word.

Python performance issue. During the constructing the path dictionary, we need to check whether the key already exists. We can use dict.has_key() or key in dict.keys(), however both ways get a TLE by oj.leetcode.com. In this case, we can use dict.setdefault(key, default_value) or try...except... clause to accelerate such operations.

class Solution:
# @param start, a string
# @param end, a string
# @param dict, a set of string
# @return an integer
def findLadders(self, start, end, dict):
"""
Similar to solving WordLadder 1, we use a double-direction BFS.
However, instead of only storing the last word of each path (front edges),
we need to store the entire path.
In the code for solving WordLadder 1,
we check two fronts meet during extending the paths,
but this problem asks for all possible shortest path,
so we need to extend all paths and then check all pairs of paths from start and end.
"""
# Special cases
if start == end:
return [start] # The length of words
WORD_LENGTH = len(start) # New words in one step
new_words = set() # Initialize the set of visited words
start_front = set()
start_front.add(start)
start_visited = set()
start_visited.add(start) end_front = set()
end_front.add(end)
end_visited = set()
end_visited.add(end) # Add end to the dictionary
dict.add(end) # Traverse map
next_words = {} meet = False
# Extend the two fronts and check if they can meet
while not meet:
# Extend the start front
new_words.clear()
for w in start_front:
next_words[w] = []
for i in xrange(WORD_LENGTH):
for candidate in [w[:i]+chr(97+c)+w[i+1:] for c in xrange(26)]:
if candidate in dict and candidate not in start_visited:
next_words[w].append(candidate)
new_words.add(candidate)
if new_words:
# Update visited words
start_visited.update(new_words)
start_front = new_words.copy()
else:
return [] # Check if two fronts meet
if start_front & end_front:
break # Extend the end front
new_words.clear()
for w in end_front:
for i in xrange(WORD_LENGTH):
for candidate in [w[:i]+chr(97+c)+w[i+1:] for c in xrange(26)]:
if candidate in dict and candidate not in end_visited:
next_words.setdefault(candidate, []).append(w)
#try:
# next_words[candidate].append(w)
#except:
# next_words[candidate] = [w]
new_words.add(candidate)
if new_words:
end_visited.update(new_words)
end_front = new_words.copy()
else:
return []
# Check if two fronts meet
if start_front & end_front:
break
# BFS from start to end
res = []
path = [[start]]
while res == []:
new_path = []
for p in path:
try:
for w in next_words[p[-1]]:
new_path.append(p+[w])
if w == end:
res.append(p+[w])
except:
pass
path = new_path
# Return all paths in res
return res

【LeetCode OJ】Word Ladder II的更多相关文章

  1. 【LeetCode OJ】Word Ladder I

    Problem Link: http://oj.leetcode.com/problems/word-ladder/ Two typical techniques are inspected in t ...

  2. 【LeetCode OJ】Word Break II

    Problem link: http://oj.leetcode.com/problems/word-break-ii/ This problem is some extension of the w ...

  3. 【LeetCode OJ】Word Break

    Problem link: http://oj.leetcode.com/problems/word-break/ We solve this problem using Dynamic Progra ...

  4. 【LeetCode OJ】Path Sum II

    Problem Link: http://oj.leetcode.com/problems/path-sum-ii/ The basic idea here is same to that of Pa ...

  5. 【LeetCode OJ】Palindrome Partitioning II

    Problem Link: http://oj.leetcode.com/problems/palindrome-partitioning-ii/ We solve this problem by u ...

  6. 【LEETCODE OJ】Single Number II

    Problem link: http://oj.leetcode.com/problems/single-number-ii/ The problem seems like the Single Nu ...

  7. 【leetcode】Word Ladder II

      Word Ladder II Given two words (start and end), and a dictionary, find all shortest transformation ...

  8. 【LeetCode 229】Majority Element II

    Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorit ...

  9. 【leetcode刷题笔记】Word Ladder II

    Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from ...

随机推荐

  1. Qt之QSS(黑色炫酷)

    简述 Qt助手中有关于各种部件的QSS详细讲解,资源很丰富,请参考:Qt Style Sheets Examples. 黑色炫酷 - 一款漂亮的QSS风格. 之前博客中分享了很多关于Qt的样式效果,几 ...

  2. 输出有序数组的中两个元素差值为指定值diff的两个元素

    题目: 输出有序数组的中两个元素差值为指定值diff的两个元素. 思路: 这与输出两个元素的和的值为一定值类似,需要两个指针,不同的是:指针不是一左一右,而是一前一后. 如果差值等于diff,则返回: ...

  3. Struts、JSTL标签库的基本使用方法

    一 使用Struts标签之前需要经过下面3个步骤的配置. 1.导入TLD文件. 2.在web.xml中注册标签库. 3.在页面中引入标签库. 下面详细介绍以上步骤. 1 导入TLD文件. TLD文件是 ...

  4. 【转载】如何在德州仪器网站查找和下载PCB封装

    德州仪器的网站做得相当不错,查找IC资料和下载IC封装样样给力.那么如何在TI网站上能够快速查找到自已需要的PCB封装呢?下面我来告诉你. 1.       在浏览器中输入网址http://weben ...

  5. OpenGL基础图形编程

    一.OpenGL与3D图形世界1.1.OpenGL使人们进入三维图形世界 我们生活在一个充满三维物体的三维世界中,为了使计算机能精确地再现这些物体,我们必须能在三维空间描绘这些物体.我们又生活在一个充 ...

  6. 高效前端优化工具--Fiddler入门教程

    简介: Fiddler是用C#编写的一个免费的HTTP/HTTPS网络调试器.Fiddler是以代理服务器的方式,监听系统的网络数据流动英语中Fiddler是小提琴的意思,Fiddler Web De ...

  7. bzoj 1816: [Cqoi2010]扑克牌

    #include<cstdio> #include<iostream> using namespace std; ],ans; bool pan(int x) { int a1 ...

  8. hdu 4627 The Unsolvable Problem

    http://acm.hdu.edu.cn/showproblem.php?pid=4627 分类讨论一下就可以 代码: #include<iostream> #include<cs ...

  9. 向MySql中插入中文时出现乱码

    这个因为字符集编码问题.在连接字符串中加上CharSet=gbk

  10. TClientDataSet 设计期 多次New 字段问题

    第一次New几个字段后,右键菜单CreateDataSet 后来需要再New几个字段. 右键菜单,先 ClearData(不这样,会报 打开的数据集不能执行 这个New字段的操作),然后在 字段编辑器 ...