Mayor's posters
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 40570   Accepted: 11798

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral
wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates
started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.


Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they
were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li
<= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.




The picture below illustrates the case of the sample input.

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

题意:给n张海报能贴瓷砖的范围,问,最终可以看见多少张海报

心得:线段树的离散化的第一步,以后写线段树绝对要多建几个函数,好修改,看代码↓

#include<iostream>
#include<cstdio>
#include<cstring>
#include <algorithm>
#define Max 10005
using namespace std;
struct node{
int l, r, m, s;
}Tree[Max<<3];
int li[Max], ri[Max];
int point[Max<<2];
int see[Max];
int ans;
int n, m, ni; void Complex(){
memset(li,0,sizeof(li));
memset(ri,0,sizeof(ri));
memset(point,0,sizeof(point));
memset(see,0,sizeof(see));
} void Build(int l,int r,int k)
{
Tree[k].l = l;
Tree[k].r = r;
Tree[k].s = -1;
Tree[k].m = (l+r)>>1;
if(l==r) return;
Build(Tree[k].m+1,r,k+k+1);
Build(l,Tree[k].m,k+k);
return;
} void update(int l, int r, int k)
{
if(Tree[k].l == l && Tree[k].r == r)
{
Tree[k].s = ni;
return;
}
else if(Tree[k].s != -1)
{
Tree[k+k].s = Tree[k+k+1].s = Tree[k].s;
Tree[k].s = -1;
} if(r <= Tree[k].m) update(l, r, k+k);
else if(l > Tree[k].m) update(l, r, k+k+1);
else
{
update(l, Tree[k].m, k+k);
update(Tree[k].m + 1, r, k+k+1);
}
return;
} void Query(int k) //统计
{
if(Tree[k].s>=0)
{
if(!see[Tree[k].s]++) ans++;
return;
}
Query(k+k);
Query(k+k+1);
return;
} int Bin(int xi) //二分查找特定点在关键点数字中的位置,为了更新线段树
{
int l = 1, r = m;
while(l<=r)
{
int mi = (l+r)>>1;
if(xi == point[mi]) return mi;
if(xi >= point[mi]) l = mi + 1;
else r = mi - 1;
}
return -1;
} void Myscanf() //统一输入,方便修改
{
ans = 0;
m = 1;
scanf("%d",&n);
for(int i=0; i<n; i++)
{
scanf("%d%d",&li[i],&ri[i]);
point[m++] = li[i];
point[m++] = ri[i];
}
} void Point_Do() //先排序在去重,达到离散的效果
{
int mi = 0;
sort(point+1,point+1+m);
for(int i=1; i<=m; i++)
{
if(point[i]!=point[mi]) point[++mi] = point[i]; //去重
}
m = mi;
} void Find_Point()
{
for(int i=0; i<n; i++)
{
ni = i;
update(Bin(li[i]),Bin(ri[i]),1);
}
} int main()
{
int num;
scanf("%d",&num);
while(num--)
{
Complex(); //初始化函数
Myscanf(); //输入函数
Point_Do(); //处理关键点函数
Build(1,m,1); //建树函数
Find_Point(); //对各个海报范围的处理函数
Query(1); //统计函数
printf("%d\n",ans); //输出结果
} return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

Poj 2528 Mayor's posters 分类: Brush Mode 2014-07-23 09:12 84人阅读 评论(0) 收藏的更多相关文章

  1. MS SQLServer 批量附加数据库 分类: SQL Server 数据库 2015-07-13 11:12 30人阅读 评论(0) 收藏

    ************************************************************ * 标题:MS SQLServer 批量附加数据库 * 说明:请根据下面的注释 ...

  2. 修改MS SQL忽略大小写 分类: SQL Server 数据库 2015-06-19 09:18 34人阅读 评论(0) 收藏

    第一步:数据库->属性->选项->限制访问:SINGLE_USER 第二步:ALTER DATABASE [数据库名称] collate Chinese_PRC_CI_AI 第三步: ...

  3. *** glibc detected *** malloc(): memory corruption 分类: C/C++ Linux 2015-05-14 09:22 37人阅读 评论(0) 收藏

    *** glibc detected *** malloc(): memory corruption: 0x09eab988 *** 发现是由于memset越界写引起的. 在Linux Server上 ...

  4. Improving the GPA 分类: 贪心 HDU 比赛 2015-08-08 16:12 11人阅读 评论(0) 收藏

    Improving the GPA Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) ...

  5. vs2008 多人同时开发项目时的代码注释规范格式 分类: C#小技巧 2014-04-23 14:12 297人阅读 评论(0) 收藏

    多人同时开发一个项目,区分项目的那个窗体是谁开发的,例:下面的格式 /************************************************       模块:服务器设置   ...

  6. OC基础:继承.初始化方法,便利构造器 分类: ios学习 OC 2015-06-16 19:27 84人阅读 评论(0) 收藏

    继承: 1.单向继承,一个类只能有一个父类,一个父类可以有多个子类. 2.单向继承,基类(根类)是OSObject 3.子类可以继承父类的属性和方法 当父类的方法不满足子类的需求时,子类可以重写父类的 ...

  7. sscanf 函数 分类: POJ 2015-08-04 09:19 4人阅读 评论(0) 收藏

    sscanf 其实很强大 分类: 纯C技术 技术笔记 2010-03-05 16:00 12133人阅读 评论(4) 收藏 举报 正则表达式stringbuffercurlgoogle 最近在做日志分 ...

  8. Mahout快速入门教程 分类: B10_计算机基础 2015-03-07 16:20 508人阅读 评论(0) 收藏

    Mahout 是一个很强大的数据挖掘工具,是一个分布式机器学习算法的集合,包括:被称为Taste的分布式协同过滤的实现.分类.聚类等.Mahout最大的优点就是基于hadoop实现,把很多以前运行于单 ...

  9. Poj 2349 Arctic Network 分类: Brush Mode 2014-07-20 09:31 93人阅读 评论(0) 收藏

    Arctic Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9557   Accepted: 3187 De ...

随机推荐

  1. Linux文件系统的主要目录结构说明及分区方案

    Linux操作系统有一些固定的目录.各种Linux发行版的目录结构虽然不会一模一样,但是不会有很大差异.知道了这些目录的作用,不仅对你进行磁盘分区规划很有帮助,而且会让你以后的日常维护工作变得轻松.只 ...

  2. NetCat使用手册

    简介:   在网络工具中有“瑞士军刀”美誉的NetCat(以下简称nc),在我们用了N年了至今仍是爱不释手.因为它短小精悍(这个用在它身上很适合,现在有人已经将其修改成大约10K左右,而且功能不减少) ...

  3. Java 8 Lambda表达式

    Java 8 Lambda表达式探险 http://www.cnblogs.com/feichexia/archive/2012/11/15/Java8_LambdaExpression.html 为 ...

  4. ASP.net UrlRewrite的防盗链功能

    ASP.net中如何实现基于UrlRewrite的防盗链. ASP.net中最快实现UrlRewrite的方法这篇文章中说了如何做UrlRewrite,那只是一个最简单的应用 其实利用UrlRewri ...

  5. IIS上部署MVC网站,打开后ExtensionlessUrlHandler-Integrated-4.0解决办法

    IIS上部署MVC网站,打开后ExtensionlessUrlHandler-Integrated-4.0解决方法 IIS上部署MVC网站,打开后500错误:处理程序“ExtensionlessUrl ...

  6. 同时执行2个存储过程,2个SP中分别有相同的临时表名,会有冲突吗?

    同时执行2个存储过程,2个SP中分别有相同的临时表名,会有冲突吗?答案:不会 这就可以在以后写存储过程的时候统一临时表名了. alter procedure sp_01 as begin create ...

  7. ES6 入门系列 - 函数的扩展

    1函数参数的默认值 基本用法 在ES6之前,不能直接为函数的参数指定默认值,只能采用变通的方法. function log(x, y) { y = y || 'World'; console.log( ...

  8. eclipse创建android项目失败的问题 [ android support library ]

    有根筋搭错了,想起来android应用开发???? 放下两年的手机应用开发,昨天有更新了android SDK, 重新搭建开发环境. 这两年android 变化真TM的大............... ...

  9. 发现了一个制作iOS图标的利器

    我制作的第一个Swift Demo已经将近完工,今天的任务便是给它添加图标.不过Xcode中对图标尺寸的要求还真是严苛,若是制作iPhone和iPad通用的应用,总共需要12种尺寸的图标,这对于美工功 ...

  10. 制作越狱版本的ipa文件

    1.新建项目,证书选择开发者自己创建的证书 2.编译项目,在工程左侧树形菜单中,找到Product,找到编译后的项目,邮件,找到.app文件路径. 3.将这个app文件拖入到iTunes,邮件点击图标 ...