版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/。未经本作者同意不得转载。

https://blog.csdn.net/kenden23/article/details/26821635

寻找图中最小连通的路径,图例如以下:

算法步骤:

1. Sort all the edges in non-decreasing order of their weight.

2. Pick the smallest edge. Check if it forms a cycle with the spanning tree
formed so far. If cycle is not formed, include this edge. Else, discard it. 3. Repeat step#2 until there are (V-1) edges in the spanning tree.

关键是第二步难,这里使用Union Find来解决,能够差点儿小于O(lgn)的时间效率来推断是否须要推断的顶点和已经选择的顶点成环。

正由于这步,使得原本简单的贪心法。变得不那么简单了。

这样本算法的时间效率达到:max(O(ElogE) , O(ElogV))

原文參考:http://www.geeksforgeeks.org/greedy-algorithms-set-2-kruskals-minimum-spanning-tree-mst/

#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <string.h> class KruskalsMST
{
struct Edge
{
int src, des, weight;
}; static int cmp(const void *a, const void *b)
{
Edge *a1 = (Edge *) a, *b1 = (Edge *) b;
return a1->weight - b1->weight;
} struct Graph
{
int V, E;
Edge *edges;
Graph(int v, int e) : V(v), E(e)
{
edges = new Edge[e];
}
virtual ~Graph()
{
if (edges) delete [] edges;
}
}; struct SubSet
{
int parent, rank;
}; int find(SubSet *subs, int i)
{
if (subs[i].parent != i)
subs[i].parent = find(subs, subs[i].parent);
return subs[i].parent;
} void UnionTwo(SubSet *subs, int x, int y)
{
int xroot = find(subs, x);
int yroot = find(subs, y);
if (subs[xroot].rank < subs[yroot].rank)
subs[xroot].parent = yroot;
else if (subs[xroot].rank > subs[yroot].rank)
subs[yroot].parent = xroot;
else
{
subs[xroot].rank++;
subs[yroot].parent = xroot;
}
} Graph *graph;
Edge *res;
SubSet *subs; void initSubSet()
{
subs = new SubSet[graph->V];
for (int i = 0; i < graph->V; i++)
{
subs[i].parent = i;
subs[i].rank = 0;
}
} void mst()
{
res = new Edge[graph->V-1]; qsort(graph->edges, graph->E, sizeof(graph->edges[0]), cmp); initSubSet(); for (int e = 0, i = 0; e < graph->V - 1 && i < graph->E; i++)
{
Edge nextEdge = graph->edges[i];
int x = find(subs, nextEdge.src);
int y = find(subs, nextEdge.des);
if (x != y)
{
res[e++] = nextEdge;
UnionTwo(subs, x, y);
}
}
} void printResult()
{
printf("Following are the edges in the constructed MST\n");
for (int i = 0; i < graph->V-1; ++i)
printf("%d -- %d == %d\n", res[i].src, res[i].des, res[i].weight);
}
public:
KruskalsMST()
{
/* Let us create following weighted graph
10
0--------1
| \ |
6| 5\ |15
| \ |
2--------3
4 */
int V = 4; // Number of vertices in graph
int E = 5; // Number of edges in graph
graph = new Graph(V, E); // add edge 0-1
graph->edges[0].src = 0;
graph->edges[0].des = 1;
graph->edges[0].weight = 10; // add edges 0-2
graph->edges[1].src = 0;
graph->edges[1].des = 2;
graph->edges[1].weight = 6; // add edges 0-3
graph->edges[2].src = 0;
graph->edges[2].des = 3;
graph->edges[2].weight = 5; // add edges 1-3
graph->edges[3].src = 1;
graph->edges[3].des = 3;
graph->edges[3].weight = 15; // add edges 2-3
graph->edges[4].src = 2;
graph->edges[4].des = 3;
graph->edges[4].weight = 4; mst();
printResult();
}
~KruskalsMST()
{
if (res) delete [] res;
if (subs) delete [] subs;
if (graph) delete graph;
}
};

Geeks : Kruskal’s Minimum Spanning Tree Algorithm 最小生成树的更多相关文章

  1. MST(Kruskal’s Minimum Spanning Tree Algorithm)

    You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...

  2. 【HDU 4408】Minimum Spanning Tree(最小生成树计数)

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  3. 说说最小生成树(Minimum Spanning Tree)

    minimum spanning tree(MST) 最小生成树是连通无向带权图的一个子图,要求 能够连接图中的所有顶点.无环.路径的权重和为所有路径中最小的. graph-cut 对图的一个切割或者 ...

  4. 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集

    最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...

  5. HDU 4408 Minimum Spanning Tree 最小生成树计数

    Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  6. 【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解

    本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情 ...

  7. 数据结构与算法分析–Minimum Spanning Tree(最小生成树)

    给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...

  8. Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  9. hdu 4408 Minimum Spanning Tree

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

随机推荐

  1. Javascript Madness: Mouse Events

    http://unixpapa.com/js/mouse.html Javascript Madness: Mouse Events Jan WolterAug 12, 2011 Note: I ha ...

  2. C#关于操作符重载与转换

    随便写写 首先,假设我们有一个Person类型 其类型定义如下 class Person { public string Name { get; set; } = "Person" ...

  3. SpringBoot+Swagger2 整合

    SpringBoot+Swagger2四步整合 第一步:添加相关依赖 <parent> <groupId>org.springframework.boot</groupI ...

  4. python 历险记(五)— python 中的模块

    目录 前言 基础 模块化程序设计 模块化有哪些好处? 什么是 python 中的模块? 引入模块有几种方式? 模块的查找顺序 模块中包含执行语句的情况 用 dir() 函数来窥探模块 python 的 ...

  5. Exam E05-001 Information Storage and Management Version 3 Exam

    Emc 考试 e05-001信息存储和管理版本3考试 [总问题:171] 哪种 emc 产品提供软件定义的存储基础架构的自动监视和报告? A. viprSrmB. 斯纳普内C. 阿瓦马尔D. 快速副总 ...

  6. Drupal8入门文章推荐

    1.<drupal 8 入门 > 2.<初探drupal8>

  7. Java 接口和多态

    接口 1.1 接口的概述 接口是功能的集合,同样可看做是一种数据类型,是比抽象类更为抽象的”类”. 接口只描述所应该具备的方法,并没有具体实现,具体的实现由接口的实现类(相当于接口的子类)来完成.这样 ...

  8. Android Studio 快速实现上传项目到Github(详细步骤)

    前言: 本文主要讲解如何将Android Studio项目上传至GitHub,在此之前,先介绍几个概念. Android Studio:是谷歌推出一个Android集成开发工具,基于IntelliJ ...

  9. redis 命令select、dbsize、清空数据库、info、client

    select 切换库 dbsize 当前库中数据条数 清空数据库 flushdb | flushall 清空数据,一个是清空当前库,一个清空当前实例 查看服务器及redis相关信息 infoinfo ...

  10. java 标准输出流、标准错误输出流、标准输入流及扫描仪

    初步认识标准输出流.错误输出流.输入流.扫描仪 package com.mydemo.controller; import java.util.Scanner; public class HelloW ...