Geeks : Kruskal’s Minimum Spanning Tree Algorithm 最小生成树
版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/。未经本作者同意不得转载。
https://blog.csdn.net/kenden23/article/details/26821635
寻找图中最小连通的路径,图例如以下:
算法步骤:
1. Sort all the edges in non-decreasing order of their weight. 2. Pick the smallest edge. Check if it forms a cycle with the spanning tree
formed so far. If cycle is not formed, include this edge. Else, discard it. 3. Repeat step#2 until there are (V-1) edges in the spanning tree.
关键是第二步难,这里使用Union Find来解决,能够差点儿小于O(lgn)的时间效率来推断是否须要推断的顶点和已经选择的顶点成环。
正由于这步,使得原本简单的贪心法。变得不那么简单了。
这样本算法的时间效率达到:max(O(ElogE) , O(ElogV))
原文參考:http://www.geeksforgeeks.org/greedy-algorithms-set-2-kruskals-minimum-spanning-tree-mst/
#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
class KruskalsMST
{
struct Edge
{
int src, des, weight;
};
static int cmp(const void *a, const void *b)
{
Edge *a1 = (Edge *) a, *b1 = (Edge *) b;
return a1->weight - b1->weight;
}
struct Graph
{
int V, E;
Edge *edges;
Graph(int v, int e) : V(v), E(e)
{
edges = new Edge[e];
}
virtual ~Graph()
{
if (edges) delete [] edges;
}
};
struct SubSet
{
int parent, rank;
};
int find(SubSet *subs, int i)
{
if (subs[i].parent != i)
subs[i].parent = find(subs, subs[i].parent);
return subs[i].parent;
}
void UnionTwo(SubSet *subs, int x, int y)
{
int xroot = find(subs, x);
int yroot = find(subs, y);
if (subs[xroot].rank < subs[yroot].rank)
subs[xroot].parent = yroot;
else if (subs[xroot].rank > subs[yroot].rank)
subs[yroot].parent = xroot;
else
{
subs[xroot].rank++;
subs[yroot].parent = xroot;
}
}
Graph *graph;
Edge *res;
SubSet *subs;
void initSubSet()
{
subs = new SubSet[graph->V];
for (int i = 0; i < graph->V; i++)
{
subs[i].parent = i;
subs[i].rank = 0;
}
}
void mst()
{
res = new Edge[graph->V-1];
qsort(graph->edges, graph->E, sizeof(graph->edges[0]), cmp);
initSubSet();
for (int e = 0, i = 0; e < graph->V - 1 && i < graph->E; i++)
{
Edge nextEdge = graph->edges[i];
int x = find(subs, nextEdge.src);
int y = find(subs, nextEdge.des);
if (x != y)
{
res[e++] = nextEdge;
UnionTwo(subs, x, y);
}
}
}
void printResult()
{
printf("Following are the edges in the constructed MST\n");
for (int i = 0; i < graph->V-1; ++i)
printf("%d -- %d == %d\n", res[i].src, res[i].des, res[i].weight);
}
public:
KruskalsMST()
{
/* Let us create following weighted graph
10
0--------1
| \ |
6| 5\ |15
| \ |
2--------3
4 */
int V = 4; // Number of vertices in graph
int E = 5; // Number of edges in graph
graph = new Graph(V, E);
// add edge 0-1
graph->edges[0].src = 0;
graph->edges[0].des = 1;
graph->edges[0].weight = 10;
// add edges 0-2
graph->edges[1].src = 0;
graph->edges[1].des = 2;
graph->edges[1].weight = 6;
// add edges 0-3
graph->edges[2].src = 0;
graph->edges[2].des = 3;
graph->edges[2].weight = 5;
// add edges 1-3
graph->edges[3].src = 1;
graph->edges[3].des = 3;
graph->edges[3].weight = 15;
// add edges 2-3
graph->edges[4].src = 2;
graph->edges[4].des = 3;
graph->edges[4].weight = 4;
mst();
printResult();
}
~KruskalsMST()
{
if (res) delete [] res;
if (subs) delete [] subs;
if (graph) delete graph;
}
};
Geeks : Kruskal’s Minimum Spanning Tree Algorithm 最小生成树的更多相关文章
- MST(Kruskal’s Minimum Spanning Tree Algorithm)
You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...
- 【HDU 4408】Minimum Spanning Tree(最小生成树计数)
Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...
- 说说最小生成树(Minimum Spanning Tree)
minimum spanning tree(MST) 最小生成树是连通无向带权图的一个子图,要求 能够连接图中的所有顶点.无环.路径的权重和为所有路径中最小的. graph-cut 对图的一个切割或者 ...
- 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集
最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...
- HDU 4408 Minimum Spanning Tree 最小生成树计数
Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- 【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解
本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情 ...
- 数据结构与算法分析–Minimum Spanning Tree(最小生成树)
给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- hdu 4408 Minimum Spanning Tree
Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...
随机推荐
- webfrom后台
using System;using System.Collections.Generic;using System.Linq;using System.Web;using System.Web.UI ...
- Session和Cookie之间区别与联系
一. 概念理解 你可能有留意到当你浏览网页时,会有一些推送消息,大多数是你最近留意过的同类东西,比如你想买桌子,上淘宝搜了一下,结果连着几天会有各种各样的桌子的链接.这是因为 你浏览某个网页的时候,W ...
- Func的介绍——c#封装的代理
经常看到 Func<int, bool>...这样的写法,看到这样的就没有心思看下去了.我们学技术还是需要静下心来. 对Func<int,bool>的Func转到定义看它的解 ...
- pch文件配置
配置.pch文件 刚上手 Xcode6 的人,总会发现之前在 6 之前常常会在“利用名-Prefix.pch”这个文件中来配置我们全局要用到的头文件,但是 xcode6 没有了,人家说,这类东西有时候 ...
- 对JSON数据的解析(数据推送接口)
package com.liuqi.www; import java.util.HashMap; import java.util.Map; import org.springframework.st ...
- 分布式理论基础(一)一致性及解决一致性的两种方式:2PC和3PC (转载 不错)
分布式理论基础(一)一致性及解决一致性的两种方式:2PC和3PC 1 一致性 1.1 简述 一致性,是指对每个节点一个数据的更新,整个集群都知道更新,并且是一致的 假设一个具有N个节点的分布式系统,当 ...
- Oracle扩容日志文件
0.检查当前数据库日志切换频率 select * from v$log_history where first_time>=to_date('2017-10-18','yyyy-mm-dd') ...
- 当碰到需要调试打包后的js
在react中经常开发碰到不能热更中进行调试的,如IE之类的 这个时候我们就需要打包才能运行看到效果, 但是往往每次打包都需要很长的时间: 这个时候我们就可以直接找到打包后的文件,直接在改文件中修改: ...
- JS(微信小程序)处理银行卡号
其实这是一个小程序的项目,但是JS还是那个JS 在本项目中要实现两种效果: 每隔四位插入空格: <view class='item_list'> <label>银行卡号:< ...
- ArcGIS Server集群布署
ArcGIS Server集群布署 准备如下的4台机器: 计算机名 IP 布署软件 说明 VMWIN2008ENSS1 192.168.1.111 ArcGIS for Server VMWIN2 ...