深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成。Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型。它将所有的信息数据定义为blobs,从而进行便利的操作和通讯。Blob是caffe框架中一种标准的数组,一种统一的内存接口,它详细描述了信息是如何存储的,以及如何在层之间通讯的。

1、blob

Blobs封装了运行时的数据信息,提供了CPU和GPU的同步。从数学上来说,Blob就是一个N维数组。它是caffe中的数据基本单位,就像matlab中以矩阵为基本操作对象一样。只是矩阵是二维的,而Blob是N维的。N可以是2,3,4等等。对于图片数据来说,Blob可以表示为(N*C*H*W)这样一个4D数组。其中N表示图片的数量,C表示图片的通道数,H和W分别表示图片的高度和宽度。当然,除了图片数据,Blob也可以用于非图片数据。比如传统的多层感知机,就是比较简单的全连接网络,用2D的Blob,调用innerProduct层来计算就可以了。

2、layer

层是网络模型的组成要素和计算基本单位。层的类型比较多,如Data,Convolution,Pooling,ReLUmSoftmax-loss,Accuracy等,一个层的定义大致如下图:

从bottom进行数据的输入,计算后,通过top进行输出。图中的黄色多边形表示输入输出的数据,蓝色矩形表示层。

每一种类型的层都定义为三种关键的计算:setup,forward and backword

setup:层的建立和初始化,以及在整个模型中的连接初始化。

forward:从bottom得到输入数据,进行计算,并将计算结果送到top,进行输出。

backward:从层的输出端top得到数据的梯度,计算当前层的梯度,并将计算结果送到bottom,向前传递。

3、Net

就像搭积木一样,一个net由多个layer组合而成。

现给出一个简单的2层神经网络的模型定义(加上loss层就变成三层了),先给出这个网络拓扑。

第一层:name为mnist,type为Data,没有输入(bottom),只有两个输出(top),一个为data,一个为label

第二层:name为ip,type为InnerProduct,输入数据data,输出数据ip

第三层:name为loss,type为SoftmaxWithLoss,有两个输入,一个为ip,一个为label,有一个输出loss,没有画出来。

对应的配置文件prototxt就可以这样写:

name: "LogReg"
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
data_param {
source: "input_leveldb"
batch_size: 64
}
}
layer {
name: "ip"
type: "InnerProduct"
bottom: "data"
top: "ip"
inner_product_param {
num_output: 2
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip"
bottom: "label"
top: "loss"
}

第一行将这个模型取名为LogReg,然后是三个layer的定义,参数都比较简单,只列出必须的参数。

【转】Caffe初试(八)Blob,Layer和Net以及对应配置文件的编写的更多相关文章

  1. Caffe学习系列(6):Blob,Layer and Net以及对应配置文件的编写

    深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成.Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型.它将所有的信息数据定义为blob ...

  2. (Caffe)基本类Blob,Layer,Net(一)

    本文地址:http://blog.csdn.net/mounty_fsc/article/details/51085654 Caffe中,Blob.Layer,Net,Solver是最为核心的类,下面 ...

  3. 怎样在caffe中添加layer以及caffe中triplet loss layer的实现

    关于triplet loss的原理.目标函数和梯度推导在上一篇博客中已经讲过了.详细见:triplet loss原理以及梯度推导.这篇博文主要是讲caffe下实现triplet loss.编程菜鸟.假 ...

  4. 【caffe Blob】caffe中与Blob相关的代码注释、使用举例

    首先,Blob使用的小例子(通过运行结果即可知道相关功能): #include <vector> #include <caffe/blob.hpp> #include < ...

  5. 【转】Caffe初试(九)solver及其设置

    solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 #caffe train --solver=*_solver. ...

  6. caffe初试(一)happynear的caffe-windows版本的配置及遇到的问题

    之前已经配置过一次caffe环境了: Caffe初试(一)win7_64bit+VS2013+Opencv2.4.10+CUDA6.5配置Caffe环境 但其中也提到,编译时,用到了cuda6.5,但 ...

  7. Caffe初试(三)使用caffe的cifar10网络模型训练自己的图片数据

    由于我涉及一个车牌识别系统的项目,计划使用深度学习库caffe对车牌字符进行识别.刚开始接触caffe,打算先将示例中的每个网络模型都拿出来用用,当然这样暴力的使用是不会有好结果的- -||| ,所以 ...

  8. 如何给caffe添加新的layer ?

    如何给caffe添加新的layer ? 初学caffe难免会遇到这个问题,网上搜来一段看似经典的话, 但是问题来了,貌似新版的caffe并没有上面提到的vision_layer:

  9. caffe(6) Blob,Layer,Net 以及对应配置文件的编写

    深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成.Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型.它将所有的信息数据定义为blob ...

随机推荐

  1. fastclick 源码注解及一些基础知识点

    在移动端,网页上的点击穿透问题导致了非常糟糕的用户体验.那么该如何解决这个问题呢? 问题产生的原因 移动端浏览器的点击事件存在300ms的延迟执行,这个延迟是由于移动端需要通过在这个时间段用户是否两次 ...

  2. label中设置某些指定的字体的属性设置(Color,Size,FontColor)

    不知道大家有没有遇到要设置某些字体的颜色和大小等属性的设置,下面就让我们一起走进字体的变形王国吧!!! 1.在storyboard中拖一个控件label,拖线设置属性为: @property (wea ...

  3. php的empty(),trim(),strlen()方法

    如果empty()函数的参数是非空或非零的值,则empty()返回FALSE.换句话说,"".0."0".NULL.array().var$var:以及没有任何 ...

  4. v-for遍历出的元素上添加click事件,获取对应元素上的属性id值

    <span v-for="(n,nav) in floorList" data-id="{{nav.itemId}}" v-on:click=" ...

  5. eclipse 快捷键大全(转载)

    Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当 ...

  6. js学习篇1--数组

    javascript的数组可以包含各种类型的数据. 1. 数组的长度 ,直接用 length 属性; var arr=[1,2,3]; arr.length; js中,直接给数组的length赋值是会 ...

  7. nginx_https

    nginx使用ssl模块配置HTTPS支持   默认情况下ssl模块并未被安装,如果要使用该模块则需要在编译时指定–with-http_ssl_module参数,安装模块依赖于OpenSSL库和一些引 ...

  8. JS中用apply、bind实现为函数或者类传入动态个数的参数

    为纪念10年没写blog,第一篇博文就以这样一个有趣的窍门开始吧 -___- 在ES5中,当我们调用一个函数时,如果要传入的参数是根据其他函数或条件判断生成的,也就是说不确定会传入多少个参数时,在不改 ...

  9. 一些LINQ的使用

    var list = from staff in staffList from extraRecord in extraList where staff.staffID == extraRecord. ...

  10. 搭建zookeeper集群

    简介: Zookeeper 分布式服务框架是 Apache Hadoop 的一个子项目,它主要是用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务.状态同步服务.集群管理.分布式应用配置 ...