裴蜀定理的扩展

最后返回的一定是\(k\)个数的\(gcd\)

因此对于每个数暴力分解因子统计即可


#include <map>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --) int n, k, ans;
map <int, int> ex; inline void resolve() {
int v; cin >> v;
for(int i = 1; i * i <= v; i ++)
if(v % i == 0) {
ex[i] ++;
if(ex[i] >= k && i >= ans) ans = i;
if(i != v / i) ex[v / i] ++;
if(ex[v / i] >= k && v / i >= ans) ans = v / i;
}
} int main() {
cin >> n >> k;
for(int i = 1; i <= n; i ++) resolve();
printf("%d\n", ans);
return 0;
}

luoguP4571 [JSOI2009]瓶子和燃料 裴蜀定理的更多相关文章

  1. BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  2. BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1326  Solved: 815[Submit][Stat ...

  3. 【bzoj2257】[Jsoi2009]瓶子和燃料 扩展裴蜀定理+STL-map

    题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.从中选出 $k$ 个瓶子,使得能够通过这 $k$ 个瓶子凑出 ...

  4. bzoj 2257[Jsoi2009]瓶子和燃料 数论/裴蜀定理

    题目 Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy 的飞船上共有 N个瓶子(1< ...

  5. BZOJ2257 [Jsoi2009]瓶子和燃料 【裴蜀定理】

    题目链接 BZOJ2257 题解 由裴蜀定理我们知道,若干的瓶子如此倾倒最小能凑出的是其\(gcd\) 现在我们需要求出\(n\)个瓶子中选出\(K\)个使\(gcd\)最大 每个数求出因数排序即可 ...

  6. bzoj 2257: [Jsoi2009]瓶子和燃料【裴蜀定理+gcd】

    裴蜀定理:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立. 所以最后能得到的最小燃料书就是gcd,所以直 ...

  7. BZOJ-2257 瓶子和燃料 分解因数+数论方面乱搞(裴蜀定理)

    一开始真没想出解法...后来发现那么水.... 2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 970 So ...

  8. BZOJ-2257:瓶子和燃料(裴蜀定理)

    jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy的飞船上共有 N个瓶子(1<=N<=1000) ,经过 ...

  9. [BZOJ 2257][JSOI2009]瓶子和燃料 题解(GCD)

    [BZOJ 2257][JSOI2009]瓶子和燃料 Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子 ...

随机推荐

  1. 《区块链100问》第85集:资产代币化之对标美元USDT

    USDT是Tether公司推出的对标美元(USD)的代币Tether USD.1USDT=1美元,用户可以随时使用USDT与USD进行1:1兑换.Tether公司执行1:1准备金保证制度,即每个USD ...

  2. Java枚举类型的用法

    JDK1.5引入了新的类型——枚举.在 Java 中它虽然算个“小”功能,却给我的开发带来了“大”方便. 1.用法一:常量 在JDK1.5 之前,我们定义常量都是: public static fia ...

  3. Servlet笔记3--Servlet生命周期

    Servlet生命周期:

  4. 記一次undo問題

    記一次undo問題 參考:http://www.linuxidc.com/Linux/2014-06/103780.htm ORA-00376: 無法於此時讀取檔案 3 ORA-01110: 資料檔 ...

  5. 图文解说视频直播原理-zz

    本文主要介绍rtmp&hls视频直播原理,文章最早发表在我们的微信公众号上,详见这里,欢迎关注微信公众号blackerteam,更多详见www.blackerteam.com 现在视频直播很火 ...

  6. Virut样本取证特征

    1.网络特征 ant.trenz.pl ilo.brenz.pl 2.文件特征 通过对文件的定位,使用PEID查看文件区段,如果条件符合增加了7个随机字符区段的文件,则判定为受感染文件. 3.受感染特 ...

  7. LCD时序中设计到的VSPW/VBPD/VFPD/HSPW/HBPD/HFPD总结【转】

    转自:https://blog.csdn.net/u011603302/article/details/50732406 下面是我在网上摘录的一些关于LCD信号所需时钟的一些介绍, 描述方式一: 来自 ...

  8. VC++ 编译libcurl 支持SSL,GZIP

    由于网上下载的 libcurl 不支持 gzip,只好自己动手编译,期间走了很多弯路,下面是最终成功的记录. 我所使用的环境 Visual Studio 2010 . Windows 7 64 bit ...

  9. Android浮动窗口的实现

    1.浮动窗口的实现原理 看到上图的那个小Android图标了吧,它不会被其他组建遮挡,也可以响应用户的点击和拖动事件,它的显示和消失由WindowManager直接管理,它就是Android浮动窗口. ...

  10. vue实现结算淘宝购物车效果

    实现单选时的价格,全选时价格 单选效果图 全选效果图 html <template> <!-- 淘宝结算购物车 --> <div class="settleme ...