luoguP4571 [JSOI2009]瓶子和燃料 裴蜀定理

裴蜀定理的扩展
最后返回的一定是\(k\)个数的\(gcd\)
因此对于每个数暴力分解因子统计即可
#include <map>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
int n, k, ans;
map <int, int> ex;
inline void resolve() {
int v; cin >> v;
for(int i = 1; i * i <= v; i ++)
if(v % i == 0) {
ex[i] ++;
if(ex[i] >= k && i >= ans) ans = i;
if(i != v / i) ex[v / i] ++;
if(ex[v / i] >= k && v / i >= ans) ans = v / i;
}
}
int main() {
cin >> n >> k;
for(int i = 1; i <= n; i ++) resolve();
printf("%d\n", ans);
return 0;
}
luoguP4571 [JSOI2009]瓶子和燃料 裴蜀定理的更多相关文章
- BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理
2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...
- BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】
2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1326 Solved: 815[Submit][Stat ...
- 【bzoj2257】[Jsoi2009]瓶子和燃料 扩展裴蜀定理+STL-map
题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.从中选出 $k$ 个瓶子,使得能够通过这 $k$ 个瓶子凑出 ...
- bzoj 2257[Jsoi2009]瓶子和燃料 数论/裴蜀定理
题目 Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy 的飞船上共有 N个瓶子(1< ...
- BZOJ2257 [Jsoi2009]瓶子和燃料 【裴蜀定理】
题目链接 BZOJ2257 题解 由裴蜀定理我们知道,若干的瓶子如此倾倒最小能凑出的是其\(gcd\) 现在我们需要求出\(n\)个瓶子中选出\(K\)个使\(gcd\)最大 每个数求出因数排序即可 ...
- bzoj 2257: [Jsoi2009]瓶子和燃料【裴蜀定理+gcd】
裴蜀定理:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立. 所以最后能得到的最小燃料书就是gcd,所以直 ...
- BZOJ-2257 瓶子和燃料 分解因数+数论方面乱搞(裴蜀定理)
一开始真没想出解法...后来发现那么水.... 2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 970 So ...
- BZOJ-2257:瓶子和燃料(裴蜀定理)
jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy的飞船上共有 N个瓶子(1<=N<=1000) ,经过 ...
- [BZOJ 2257][JSOI2009]瓶子和燃料 题解(GCD)
[BZOJ 2257][JSOI2009]瓶子和燃料 Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子 ...
随机推荐
- 零值比较--BOOL,int,float,指针变量与零值比较的if语句
这是程序员面试的一道常见题,也是个C++基础问题.若只在大学里看过几本基础的编程入门书,看见这道题可能会觉得奇怪,不就是和0比较吗,直接拿出来比就是了,其实非也.下文引自google搜索结果,出处不详 ...
- 【codeforces】【比赛题解】#861 CF Round #434 (Div.2)
本来是rated,现在变成unrated,你说气不气. 链接. [A]k-凑整 题意: 一个正整数\(n\)的\(k\)-凑整数是最小的正整数\(x\)使得\(x\)在十进制下末尾有\(k\)个或更多 ...
- python3之pymysql模块
1.python3 MySQL数据库链接模块 PyMySQL 是在 Python3.x 版本中用于连接 MySQL 服务器的一个库,Python2中则使用mysqldb. PyMySQL 遵循 Pyt ...
- 使用Cache缓存
存放位置:服务器内存,用于频繁访问且不轻易更改的内容缓存. string CacheKey = "CT1"; //检索指定项, object objModel = Cache.Ge ...
- 十七、springboot配置FastJson为Spring Boot默认JSON解析框架
前提 springboot默认自带json解析框架,默认使用jackson,如果使用fastjson,可以按照下列方式配置使用 1.引入fastjson依赖库: maven: <dependen ...
- Mac ssh
mac的终端默认在打开一个新的tab/window的时候需要重新输入ssh的密码, 很不方便.本文完成在mac中设置,实现secureCRT/xshell里的克隆会话功能, 即新开一个terminal ...
- python-windows下将单个py文件生成exe
突然要生成一个exe给其他人用.紧急搜索下了 命令行参数获取用如下方法 from sys import argv base64path = argv[1] argv这个元组就是你的参数列表了,同C一样 ...
- Nginx - 日志格式及输出
1. 前言 在 Nginx 服务器中,如果想对日志输出进行控制还是很容易的.Nginx 服务器提供了一个 HttpLogModule 模块,可以通过它来设置日志的输出格式. 2. HttpLogMod ...
- 安装node版本管理工具之NVM
nvm是个啥?nvm是一个可以让你在同一台机器上安装和切换不同版本node的工具. 你可能会问,为什么会有这个工具?有时候在开发的时候,对node版本有强制要求,有的要求用最新版本,有的要求用稳定版本 ...
- java基础29 迭代器 listIterator() 及各种遍历集合的方法
listIterator() 迭代器包含了 Iterator() 迭代器中的所有方法. 1.ListIterator的常用方法 hasPrevious() :判断是否还有上一个元素,有则返回true ...