【题目大意】

给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用。

【思路】

按照某维坐标排序,相邻两个点在这一维度上的差值最小,所以两两连边,长度为这一维度上的差值(不用考虑另外一维度的,就算另外一维度的更小,在连另外一维度的时候也能够抵达)。然后跑最短路即可。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
typedef long long ll;
const ll INF=1e15;
const int MAXN=+;
struct node
{
int x,y,id;
}p[MAXN];
struct edge
{
int to,len;
};
vector<edge> E[MAXN];
int n;
priority_queue<pair<ll,int>,vector<pair<ll,int> >,greater<pair<ll,int> > > que;
ll dis[MAXN];int vis[MAXN]; bool cmpx(node a,node b){return (a.x<b.x);}
bool cmpy(node a,node b){return (a.y<b.y);} void addedge(int u,int v,int w)
{
E[u].push_back((edge){v,w});
E[v].push_back((edge){u,w});
} void init()
{
scanf("%d",&n);
for (int i=;i<=n;i++) scanf("%d%d",&p[i].x,&p[i].y),p[i].id=i;
sort(p+,p+n+,cmpx);
for (int i=;i<n;i++) addedge(p[i].id,p[i+].id,p[i+].x-p[i].x);
sort(p+,p+n+,cmpy);
for (int i=;i<n;i++) addedge(p[i].id,p[i+].id,p[i+].y-p[i].y); } void solve()
{
for (int i=;i<=n;i++) vis[i]=,dis[i]=INF;
dis[]=;
que.push(make_pair<ll,int>(,));
while (!que.empty())
{
int head=que.top().second;que.pop();
vis[head]=;
for (int i=;i<E[head].size();i++)
{
edge now=E[head][i];
if (!vis[now.to] && dis[now.to]>dis[head]+(ll)now.len)
{
dis[now.to]=dis[head]+(ll)now.len;
que.push(make_pair<ll,int>(dis[now.to],now.to));
}
}
}
printf("%lld",dis[n]);
} int main()
{
init();
solve();
return ;
}

【堆优化Dijkstra】BZOJ4152- [AMPPZ2014]The Captain的更多相关文章

  1. 【bzoj4152】[AMPPZ2014]The Captain 堆优化Dijkstra

    题目描述 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用. 输入 第一行包含一个正整数n(2<=n< ...

  2. BZOJ 3040 最短路 (堆优化dijkstra)

    这题不是裸的最短路么?但是一看数据范围就傻了.点数10^6,边数10^7.这个spfa就别想了(本来spfa就是相当不靠谱的玩意),看来是要用堆优化dijkstra了.但是,平时写dijkstra时为 ...

  3. UVA - 11374 - Airport Express(堆优化Dijkstra)

    Problem    UVA - 11374 - Airport Express Time Limit: 1000 mSec Problem Description In a small city c ...

  4. BZOJ5415[Noi2018]归程——kruskal重构树+倍增+堆优化dijkstra

    题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 n 个节点.m 条边的无向连通图(节点的编号从 1 至 n).我们依次用 l,a 描述一条边的长度.海 ...

  5. 配对堆优化Dijkstra算法小记

    关于配对堆的一些小姿势: 1.配对堆是一颗多叉树. 2.包含优先队列的所有功能,可用于优化Dijkstra算法. 3.属于可并堆,因此对于集合合并维护最值的问题很实用. 4.速度快于一般的堆结构(左偏 ...

  6. POJ 3635 - Full Tank? - [最短路变形][手写二叉堆优化Dijkstra][配对堆优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 题意题解等均参考:POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]. 一些口胡: ...

  7. 【堆优化Dijkstra+字典序最短路方案】HDU1385-Minimum Transport Cost

    [题目大意] 给出邻接矩阵以及到达各个点需要付出的代价(起点和终点没有代价),求出从给定起点到终点的最短路,并输出字典序最小的方案. [思路] 在堆优化Dijkstra中,用pre记录前驱.如果新方案 ...

  8. 【bzoj5197】[CERC2017]Gambling Guide 期望dp+堆优化Dijkstra

    题目描述 给定一张n个点,m条双向边的无向图. 你要从1号点走到n号点.当你位于x点时,你需要花1元钱,等概率随机地买到与x相邻的一个点的票,只有通过票才能走到其它点. 每当完成一次交易时,你可以选择 ...

  9. 堆优化Dijkstra计算最短路+路径计数

    今天考试的时候遇到了一道题需要路径计数,然而蒟蒻从来没有做过,所以在考场上真的一脸懵逼.然后出题人NaVi_Awson说明天考试还会卡SPFA,吓得我赶紧又来学一波堆优化的Dijkstra(之前只会S ...

随机推荐

  1. XSS注入常用语句

    <script>alert('hello,gaga!');</script> //经典语句,哈哈! >"'><img src="javas ...

  2. python目前安装的包备份

    Package Version ------------------------------- ------------------ alembic altgraph 0.14 apistar app ...

  3. Html.DropDownListFor() 二级联动 ($.getJSON)

    Control: public ActionResult GetPositionName(int parentid) //发布新职位页面中的根据职位类别,获取职位名称 { List<Catego ...

  4. 在Mac上搭建ReactNative开发环境

    1.安装Homebrew,   Mac系统的包管理器,用于安装NodeJS和一些其他必需的工具软件. /usr/bin/ruby -e "$(curl -fsSL https://raw.g ...

  5. Vue 实现countDown倒计时

    项目中要用到倒计时,用Vue 实现了一个 <template> <transition name="bkcd"> <div class="b ...

  6. MySQL缓存命中率概述及如何提高缓存命中率

    MySQL缓存命中率概述 工作原理: 查询缓存的工作原理,基本上可以概括为: 缓存SELECT操作或预处理查询(注释:5.1.17开始支持)的结果集和SQL语句: 新的SELECT语句或预处理查询语句 ...

  7. NOIP2002普及T3【产生数】

    做完发现居然没人用map搞映射特意来补充一发 很容易看出这是一道搜索题考虑搜索方案,如果按字符串转移,必须存储每种状态,空间复杂度明显会爆炸观察到每一位之间是互不影响的 考虑使用乘法原理搜索出每一位的 ...

  8. 根据后端传的时间前端js进行倒计时

    一.故事背景: 1. 今天公司有个项目需求 2. 在前端页面实现一个倒计时功能 3. 初步设想:后端根据需求规定一个未来的时间,前端根据当前时间进行计算 4. 然后将时间格式化,时分秒的格式 5. 时 ...

  9. sqlserver sp_spaceused用法

    sp_spaceused显示行数.保留的磁盘空间以及当前数据库中的表所使用的磁盘空间,或显示由整个数据库保留和使用的磁盘空间. 语法sp_spaceused [[@objname =] 'objnam ...

  10. 开源的python机器学习模块

    1. Scikit-learn Scikit-learn 是基于Scipy为机器学习建造的的一个Python模块,他的特色就是多样化的分类,回归和聚类的算法包括支持向量机,逻辑回归,朴素贝叶斯分类器, ...