1380 没有上司的舞会

时间限制: 1 s
空间限制: 128000 KB
题目等级 : 钻石 Diamond
 
 
 
题目描述 Description

Ural大学有N个职员,编号为1~N。他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。每个职员有一个快乐指数。现在有个周年庆宴会,要求与会职员的快乐指数最大。但是,没有职员愿和直接上司一起与会。

输入描述 Input Description

第一行一个整数N。(1<=N<=6000)
接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)
接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。
最后一行输入0,0。

输出描述
Output Description

输出最大的快乐指数。

样例输入
Sample Input

7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0

样例输出
Sample Output

5

数据范围及提示 Data Size & Hint

各个测试点1s

/*
树状动态规划
对于每个人,都有去和不去两种可能,所以找到根节点,向下处理。
对于每个节点:
1、如果到场,则在这个点的气氛值 =其所有下属都不到场时的气氛值 +其本身的气氛值。
2、如果不到场,则在这个点的气氛值=其下属到场(或者不到场,二者取较大值)时的气氛值。
*/
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
const int maxn=+;
vector<int> g[];
int f[maxn][],a[maxn/],b[maxn/],n;
void dfs(int k)//dfs求解
{
for(int i=;i<g[k].size();i++)//搜索每一个子节点
{
int h=g[k][i];
dfs(h);
f[k][]+=max(f[h][],f[h][]);//去或者不去,0表示不去,1表示去
f[k][]+=f[h][];
}
f[k][]+=a[k];
} int main()
{
sspeed;
cin>>n;
for(int i=;i<=n;i++)
cin>>a[i];
for(int i=;;i++)
{
int x,y;
cin>>x>>y;
if(x==&&y==)
break;
g[y].push_back(x);//表示g[y]的子是什么
b[x]=y;//表示x的父节点
}//建树过程,用一个vector建树
for(int i=;i<=n;i++)
{
if(b[i]==)//从根开始
{
dfs(i);
cout<<max(f[i][],f[i][])<<endl;
}
}
return ;
}

wikioi 1380 没有上司的舞会 树形dp的更多相关文章

  1. CodeVS1380 没有上司的舞会 [树形DP]

    题目传送门 没有上司的舞会 题目描述 Description Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.每个职员有一个 ...

  2. [luogu]P1352 没有上司的舞会[树形DP]

    本Lowbee第一次写树形DP啊,弱...一个变量写错半天没看出来...... 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点 ...

  3. 『没有上司的舞会 树形DP』

    树形DP入门 有些时候,我们需要在树形结构上进行动态规划来求解最优解. 例如,给定一颗\(N\)个节点的树(通常是无根树,即有\(N-1\)条无向边),我们可以选择任意节点作为根节点从而定义出每一颗子 ...

  4. 洛谷P1352 没有上司的舞会——树形DP

    第一次自己写树形DP的题,发个博客纪念`- 题目来源:P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结 ...

  5. 没有上司的舞会 树形dp

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  6. P1352 没有上司的舞会——树形DP入门

    P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...

  7. P1352 没有上司的舞会[树形dp]

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  8. P1352 没有上司的舞会&&树形DP入门

    https://www.luogu.com.cn/problem/P1352 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的 ...

  9. 洛谷 P1352 没有上司的舞会 树形DP板子

    luogu传送门 题目描述: 某大学有n个职员,编号为1~n. 他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司. 现在有个周年庆宴会,宴会每邀请来一个职员都会 ...

随机推荐

  1. django Rest Framework----GenericAPIView 通用视图 GenericAPIView源码分析

    一.GenericAPIView GenericAPIView扩展了APIView,为标准列表和详细视图添加了常见的行为. 提供的每个具体通用视图都是一个GenericAPIView或多个mixin类 ...

  2. maven2 up to maven3的'version' contains an expression but should be a constant

    在Maven2时,为了保障版本一致,一般之前我们的做法时: Parent Pom中 <project xmlns="http://maven.apache.org/POM/4.0.0& ...

  3. 【web开发】web前端开发常用技术总结归纳

    技术选型规范规范 • Vue版本:2.x • 前端路由:vue-route • 异步请求:Axios • 全局状态管理:VueX • css预处理器:sass/less • h5项目移动端适配规则:使 ...

  4. python网络编程-多进程multiprocessing

    一:mutilprocess简介 多线程类似于同时执行多个不同程序,多线程运行有如下优点: 使用线程可以把占据长时间的程序中的任务放到后台去处理. 用户界面可以更加吸引人,这样比如用户点击了一个按钮去 ...

  5. ZooKeeper的基本概念(二)

    第一篇博文,我们对Zookeeper有了一个简单的认识,而且比较浅显,易懂,这篇博文,我们了解它的基本概念,如下图所示: 了解它的基本概念,有助于我们后面的学习,虽然今天的文章都是概念性质的内容,但是 ...

  6. 如何使用django+celery+RabbitMQ实现异步执行

    1)安装需要安装RabbitMQ.Celery和Django-celeryCelery和Django-celery的安装直接pip就好 2)修改settings.py在INSTALLED_APPS中加 ...

  7. Python之Selenium的爬虫用法

    Selenium 2,又名 WebDriver,它的主要新功能是集成了 Selenium 1.0 以及 WebDriver(WebDriver 曾经是 Selenium 的竞争对手).也就是说 Sel ...

  8. python2.7

    python2.7支持win32.win64 下载地址:http://pan.baidu.com/s/1dE39eQ9 初学,附一个牛人的python教程地址:http://www.liaoxuefe ...

  9. 面试题49:把字符串转换成整数(atoi)

    需要考虑的问题都已在程序中注释 bool isValid; int StrToInt(const char* str) { isValid = false; //不合法情形1:空指针 if (str ...

  10. 认识loadrunner及相关性能参数

    认识loadrunner及相关性能参数 LoadRunner,是一种预测系统行为和性能的负载测试工具.通过以模拟上千万用户实施并发负载及实时性能监测的方式来确认和查找问题,LoadRunner能够对整 ...