【洛谷】2602: [ZJOI2010]数字计数【数位DP】
P2602 [ZJOI2010]数字计数
题目描述
给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。
输入输出格式
输入格式:
输入文件中仅包含一行两个整数a、b,含义如上所述。
输出格式:
输出文件中包含一行10个整数,分别表示0-9在[a,b]中出现了多少次。
输入输出样例
说明
30%的数据中,a<=b<=10^6;
100%的数据中,a<=b<=10^12。
Solution
比较没有坑的数位DP了....按着题目说的做就好了
注意的是,一开始wa了一个点在0的计数上,最开始写的版本是如果当前要填的数是0并且当前前导0还没有消除那么就$continue$掉,然而这样可能会出问题....(这样做的话前导0还有什么判断的必要呢?)而且就阻断了当前位是0继续往下搜....
Code
#include<bits/stdc++.h>
#define LL long long
using namespace std; LL L, R;
LL dp[][][][];
int num[];
LL dfs(int dep, int up, int zero, int idc, int sum) {
if(!dep) return sum;
if(dp[dep][up][zero][sum]) return dp[dep][up][zero][sum];
int tot = up ? num[dep] : ;
LL tmp = ;
for(int i = ; i <= tot; i ++) {
if(i == idc && (i != || !zero)) tmp += dfs(dep - , up && i == tot, zero && i == , idc, sum + );
else tmp += dfs(dep - , up && i == tot, zero && i == , idc, sum);
}
return dp[dep][up][zero][sum] = tmp;
} LL sov(LL x, int idc) {
memset(num, , sizeof(num));
memset(dp, , sizeof(dp));
int tot = ;
while(x) {
num[++tot] = x % ;
x /= ;
}
return dfs(tot, , , idc, );
} void work() {
for(int i = ; i <= ; i ++)
printf("%lld ", sov(R, i) - sov(L - , i));
} int main() {
scanf("%lld%lld", &L, &R);
work();
return ;
}
【洛谷】2602: [ZJOI2010]数字计数【数位DP】的更多相关文章
- 洛谷P2602 [ZJOI2010]数字计数(数位dp)
数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...
- BZOJ1833或洛谷2602 [ZJOI2010]数字计数
BZOJ原题链接 洛谷原题链接 又是套记搜模板的时候.. 对\(0\sim 9\)单独统计. 定义\(f[pos][sum]\),即枚举到第\(pos\)位,前面枚举的所有位上是当前要统计的数的个数之 ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
- 洛谷 P2602 [ZJOI2010]数字计数
洛谷 第一次找规律A了一道紫题,写篇博客纪念一下. 这题很明显是数位dp,但是身为蒟蒻我不会呀,于是就像分块打表水过去. 数据范围是\(10^{12}\),我就\(10^6\)一百万一百万的打表. 于 ...
- UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)
题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...
- [洛谷P2602][ZJOI2010]数字计数
题目大意:求区间$[l,r]$中数字$0\sim9$出现个数 题解:数位$DP$ 卡点:无 C++ Code: #include <cstdio> #include <iostrea ...
- Luogu P2602 [ZJOI2010]数字计数 数位DP
很久以前就...但是一直咕咕咕 思路:数位$DP$ 提交:1次 题解:见代码 #include<cstdio> #include<iostream> #include<c ...
- 洛谷P2602 [ZJOI2010]数字计数 题解
题目描述 输入格式 输出格式 输入输出样例 输入样例 1 99 输出样例 9 20 20 20 20 20 20 20 20 20 说明/提示 数据规模与约定 分析 很裸的一道数位DP的板子 定义f[ ...
- 洛谷P2602 [ZJOI2010] 数字计数 (数位DP)
白嫖的一道省选题...... 1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 usin ...
- [ZJOI2010]数字计数 数位DP
最近在写DP,今天把最近写的都放上来好了,,, 题意:给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 首先询问的是一个区间,显然是要分别求出1 ~ r ,1 ...
随机推荐
- 数据库名(DB_NAME)、实例名(Instance_name)、以及操作系统环境变量(ORACLE_SID)
数据库名(DB_NAME).实例名(Instance_name).以及操作系统环境变量(ORACLE_SID) 在ORACLE7.8数据库中只有数据库名(db_name)和数据库实例名(instanc ...
- Django集成Xadmin list index out of range报错解决方案
return self.render(context) File "C:\Python36\lib\site-packages\django\template\defaulttags.py& ...
- 试用Redis
Windows 10家庭中文版,运行于VirtualBox上的Ubuntu 18.04,Redis 4.0.10, Redis,久仰大名!因为没有从事互联网行业,所以一直没有使用过.近期找工作,也隐约 ...
- An overview of gradient descent optimization algorithms (更新到Adam)
Momentum:解快了收敛速度,同时也减弱了SGD的波动 NAG: 减速了Momentum更新参数太快 Adagrad: 出现频率较低参数采用较大的更新,对于出现频率较高的参数采用较小的,不共用一个 ...
- pip3
pip3 install django #安装rabbitmq连接模块 pip3 install pika pip3 install paramiko pip3 install ipython pip ...
- Centos中查询目录中内容命名ls
首先解释下这块, root代表当前登录用户,localhost代表主机名, ~代表当前主机目录, #代表用户权限 #表示超级用户,$表示普通用户: 查询目录中内容命令 ls (list缩写) ...
- linux c获取本地时间
在标准C/C++中,我们可通过tm结构来获得日期和时间,tm结构在time.h中的定义如下: #ifndef _TM_DEFINED struct tm { int tm_sec; /* 秒–取值区间 ...
- Windbg在应用层调试漏洞时的应用
主要记录一些在应用层调试漏洞的技巧,不会写一些基本的命令,只记录比较有用的平时难以想到的调试方法. 1.!address eax 查看对应内存页的属性,如果poc触发异常之后就可以用这个指令看一下触发 ...
- MEF实现设计上的“松耦合”(三)
1.面向接口编程:有一定编程经验的博友应该都熟悉或者了解这种编程思想,层和层之间通过接口依赖,下层不是直接给上层提供服务,而是定义一组接口供上层调用.至于具体的业务实现,那是开发中需要做的事情,在项目 ...
- USACO 5.3 Big Barn
Big BarnA Special Treat Farmer John wants to place a big square barn on his square farm. He hates to ...