【洛谷】2602: [ZJOI2010]数字计数【数位DP】
P2602 [ZJOI2010]数字计数
题目描述
给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。
输入输出格式
输入格式:
输入文件中仅包含一行两个整数a、b,含义如上所述。
输出格式:
输出文件中包含一行10个整数,分别表示0-9在[a,b]中出现了多少次。
输入输出样例
说明
30%的数据中,a<=b<=10^6;
100%的数据中,a<=b<=10^12。
Solution
比较没有坑的数位DP了....按着题目说的做就好了
注意的是,一开始wa了一个点在0的计数上,最开始写的版本是如果当前要填的数是0并且当前前导0还没有消除那么就$continue$掉,然而这样可能会出问题....(这样做的话前导0还有什么判断的必要呢?)而且就阻断了当前位是0继续往下搜....
Code
#include<bits/stdc++.h>
#define LL long long
using namespace std; LL L, R;
LL dp[][][][];
int num[];
LL dfs(int dep, int up, int zero, int idc, int sum) {
if(!dep) return sum;
if(dp[dep][up][zero][sum]) return dp[dep][up][zero][sum];
int tot = up ? num[dep] : ;
LL tmp = ;
for(int i = ; i <= tot; i ++) {
if(i == idc && (i != || !zero)) tmp += dfs(dep - , up && i == tot, zero && i == , idc, sum + );
else tmp += dfs(dep - , up && i == tot, zero && i == , idc, sum);
}
return dp[dep][up][zero][sum] = tmp;
} LL sov(LL x, int idc) {
memset(num, , sizeof(num));
memset(dp, , sizeof(dp));
int tot = ;
while(x) {
num[++tot] = x % ;
x /= ;
}
return dfs(tot, , , idc, );
} void work() {
for(int i = ; i <= ; i ++)
printf("%lld ", sov(R, i) - sov(L - , i));
} int main() {
scanf("%lld%lld", &L, &R);
work();
return ;
}
【洛谷】2602: [ZJOI2010]数字计数【数位DP】的更多相关文章
- 洛谷P2602 [ZJOI2010]数字计数(数位dp)
数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...
- BZOJ1833或洛谷2602 [ZJOI2010]数字计数
BZOJ原题链接 洛谷原题链接 又是套记搜模板的时候.. 对\(0\sim 9\)单独统计. 定义\(f[pos][sum]\),即枚举到第\(pos\)位,前面枚举的所有位上是当前要统计的数的个数之 ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
- 洛谷 P2602 [ZJOI2010]数字计数
洛谷 第一次找规律A了一道紫题,写篇博客纪念一下. 这题很明显是数位dp,但是身为蒟蒻我不会呀,于是就像分块打表水过去. 数据范围是\(10^{12}\),我就\(10^6\)一百万一百万的打表. 于 ...
- UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)
题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...
- [洛谷P2602][ZJOI2010]数字计数
题目大意:求区间$[l,r]$中数字$0\sim9$出现个数 题解:数位$DP$ 卡点:无 C++ Code: #include <cstdio> #include <iostrea ...
- Luogu P2602 [ZJOI2010]数字计数 数位DP
很久以前就...但是一直咕咕咕 思路:数位$DP$ 提交:1次 题解:见代码 #include<cstdio> #include<iostream> #include<c ...
- 洛谷P2602 [ZJOI2010]数字计数 题解
题目描述 输入格式 输出格式 输入输出样例 输入样例 1 99 输出样例 9 20 20 20 20 20 20 20 20 20 说明/提示 数据规模与约定 分析 很裸的一道数位DP的板子 定义f[ ...
- 洛谷P2602 [ZJOI2010] 数字计数 (数位DP)
白嫖的一道省选题...... 1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 usin ...
- [ZJOI2010]数字计数 数位DP
最近在写DP,今天把最近写的都放上来好了,,, 题意:给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 首先询问的是一个区间,显然是要分别求出1 ~ r ,1 ...
随机推荐
- pytorch--cnn的理解
class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, ...
- 终端多窗口分屏Terminator
1.安装 Terminator最大的特点就是可以在一个窗口中打开多个终端 sudo apt-get install terminator 2.快捷键 Ctrl+Shift+E 垂直分割窗口 Ctrl+ ...
- aarch64_n3
ntp-doc-4.2.8p10-1.fc26.noarch.rpm 2017-03-24 02:07 1.2M fedora Mirroring Project ntp-perl-4.2.8p10- ...
- LINUX修改、增加IP的方法,一张网卡绑定多个IP/漂移IP【转】
临时增加IP命令:ifconfig eth0:1 ip地址 netmask 子网码 broadcast 广播地址 gateway 网关 ifconfig eth0:1 10.1.104.65 net ...
- js权威指南---学习笔记01
1.当函数赋值给对象的属性时,就变为了方法:2.被零整除不报错,只会返回无穷大(Infinity)或者负无穷大.例外:零除以零等于非数字(NaN).3.NaN与任何值都不相等! 4.Javascrip ...
- java基础35 双例集合Map及其常用方法
单例集合体系: ---------| collection 单例集合的根接口--------------| List 如果实现了list接口的集合类,具备的特点:有序,可重复 注:集合 ...
- 在Eclipse中建立Maven工程
- UFLDL(五)自编码算法与稀疏性
新教程内容太繁复,有空再看看,这节看的还是老教程: http://ufldl.stanford.edu/wiki/index.php/%E8%87%AA%E7%BC%96%E7%A0%81%E7%AE ...
- (三)Jsoup 使用选择器语法查找 DOM 元素
第一节: Jsoup 使用选择器语法查找 DOM 元素 Jsoup使用选择器语法查找DOM元素 我们前面通过标签名,Id,Class样式等来搜索DOM,这些是不能满足实际开发需求的, 很多时候我们需要 ...
- 分析Windows的死亡蓝屏(BSOD)机制
这篇文章本来是投Freebuf的,结果没过.就贴到博客里吧,图懒得发上来了 对于Windows系统来说,被人们视为洪水猛兽的蓝屏也是一种有利于系统稳定的机制.蓝屏其实是Windows系 统的一种自查机 ...