(清华THUSSAT,多选题)
平面上 4 个不同点 \(P_1,P_2,P_3,P_4\),在每两个点之间连接线段得到 6 条线段. 记
\[L=\max_{1\leq i<j\leq 4}|P_iP_j|,\ l=\min_{1\leq i<j\leq 4}|P_iP_j|,\]
对任意三点不共线的所有四点组 \(P_1,P_2,P_3,P_4\),把 \(\dfrac{L}{l}\) 的取值集合记为 \(P\),则
A.\(0.5 \in P\)
B.\(1 \in P\)
C.\(\sqrt{2} \in P\)
D.\(2 \in P\)

答案:C.D,构造如下:

此题是著名的"Heilbronn问题"在4个点时的情形,一般的由以下结论\(\lambda_n\ge2cos\dfrac{\pi}{n}\)当\(n\ge6\)时尚不知道能否取到等号.
事实上1985全国联赛最后一题就是考察了5个点的情形.

(1985联赛加试)平面上任给5个点,以\(\lambda\)表示这些点间最大的距离与最小的距离之比,证明:\(\lambda≥2sin54^o\)
证明:
⑴ 若此五点中有三点共线,例如A、B、C三点共线,不妨设B在A、C之间,则AB与BC必有一较大者.不妨设AB≥BC.则\(\dfrac{AC}{BC}≥2>2sin54^o\)

⑵ 设此五点中无三点共线的情况.
① 若此五点的凸包为正五边形.则其五个内角都\(=108^o\)五点的连线只有两种长度:正五边形的边长与对角线,而此对角线与边长之比为\(2sin54^o\).
② 若此五点的凸包为凸五边形.则其五个内角中至少有一个内角\(≥108^o\).设\(\angle EAB≥108^o\),且\(EA≥AB\),则\(\angle AEB≤36^o,\therefore \dfrac{BE}{AB} = \dfrac{sin(B+E)}{sinE} ≥\dfrac{sin2E}{sinE} =2cosE≥2cos36^o=2sin54^o\).
③ 若此五点的凸包为凸四边形ABCD,点E在其内部,连AC,设点E在\(\Delta ABC\)内部,则\(\angle AEB,\angle BEC,\angle CEA\)中至少有一个角\(≥120^o>108^o\),由上证可知,结论成立.
④ 若此五点的凸包为三角形ABC,则形内有两点D、E,则\(\angle ADB,\angle BDC,\angle CDA\)中必有一个角\(≥120^o\),结论成立.
综上可知,结论成立.

MT【130】Heilbronn问题的更多相关文章

  1. ascii码所有字符对照表(包含汉字和外国文字)

    http://www.0xaa55.com/thread-398-1-1.html看到了0xaa55的这个帖子,想起了2年前我在51cto发的一个帖子http://down.51cto.com/dat ...

  2. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  3. ASP.NET常见面试题及答案(130题)

    1.C#中 property 与 attribute(抽像类)的区别,他们各有什么用处,这种机制的好处在哪里?答:property和attribute汉语都称之为属性.不过property是指类向外提 ...

  4. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

  5. MT写的对URL操作的两个方法

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. 实用手册:130+ 提高开发效率的 vim 常用命令

    Vim 是从 vi 发展出来的一个文本编辑器.代码补完.编译及错误跳转等方便编程的功能特别丰富,在程序员中被广泛使用.和 Emacs 并列成为类 Unix 系统用户最喜欢的编辑器.这里收录了130+程 ...

  7. C#130问,初级程序员的面试宝典

    首先介绍下,目前C#作为一门快速开发的语言,在面试的过程中需要注意的技术知识点,了解下面的知识点对于初级工程师入职非常有帮助,也是自己的亲身体悟. 1.    简述 private. protecte ...

  8. Get value from agent failed: cannot connect to [[192.168.186.130]:10050]: [113]No route to host

    客户端配置zabbix-agent 后,网页端出现Get value from agent failed: cannot connect to [[192.168.186.130]:10050]: [ ...

  9. MD(d)、MT(d)编译选项的区别

    1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C++节 3)         点击Code ...

随机推荐

  1. python解释 yield 和 Generators(生成器)

    yield 和 Generators(生成器) 转自:http://www.oschina.net/translate/improve-your-python-yield-and-generators ...

  2. UnityShader学习笔记1 — — 入门知识整理

    注:资料整理自<Unity Shader入门精要>一书 一.渲染流程概念阶段:  应用阶段:(1)准备好场景数据:(如摄像机位置,物体以及光源等)   (2)粗粒度剔除(Culling): ...

  3. Go简单聊天

    用Go简单实现网络通信 其余功能可以在这个模型上继续加,比如增加通信人数,实现聊天 server 端 package main import ( "fmt" "log&q ...

  4. Spring Boot 学习目录

    之前一直做.net 的开发,后来发现C# 在生态方面和Java还是差了好多,而且目前有很多.net 方面的技术也是借鉴了Java相关的开发,所以最近准备学习了解一下java 相关的web开发,从中学习 ...

  5. [持久更新] 剑指offer题目Python做题记录

    第一题 题目:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 思路:先快速定位到 ...

  6. PPIO去中心化存储的了解和记录

    目录 介绍 FileCoin P2P技术给去中心化云存储的好处 剩余资源的再次使用 市场竞争会激发民间的智慧 PPIO的2种冗余模式 全副本模式 纠删副本模式 为什么PPIO要设计支付代理节点? 一些 ...

  7. IPC_Binder_java_2

    title: IPC_Binder_java_2 date: 2017-07-04 14:47:55 tags: [IPC,Binder] categories: [Mobile,Android] - ...

  8. Notes of Daily Scrum Meeting(11.11)

    Notes of Daily Scrum Meeting(11.11) 今天是11月11号光棍节,不知道大家的购物热情被点燃没有,有没有买到自己心仪的东西.额,今天我们的团队任务进度和昨天差不多, 每 ...

  9. Task 6.3 冲刺Two之站立会议1

    今天是二次冲刺的第一天,由于第一阶段已经大概完成了软件的主体功能和框架,我主要看了一下同学们提出的视频和音质的问题,想办法做出了相应的改善.另外我们的功能还是比较单一的,要对主界面进行一定的扩充,所以 ...

  10. python实现树莓派开机自动发送IP到指定邮箱

    #!/usr/bin/python # -*- coding:UTF-8 -*- #测试发送邮件163邮箱发送到qq邮箱 import smtplib from email.mime.text imp ...