The Best Path

Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 2401    Accepted Submission(s): 945

Problem Description
Alice is planning her travel route in a beautiful valley. In this valley, there are N lakes, and M rivers linking these lakes. Alice wants to start her trip from one lake, and enjoys the landscape by boat. That means she need to set up a path which go through every river exactly once. In addition, Alice has a specific number (a1,a2,...,an) for each lake. If the path she finds is P0→P1→...→Pt, the lucky number of this trip would be aP0XORaP1XOR...XORaPt. She want to make this number as large as possible. Can you help her?
 
Input
The first line of input contains an integer t, the number of test cases. t test cases follow.

For each test case, in the first line there are two positive integers N (N≤100000) and M (M≤500000), as described above. The i-th line of the next Nlines contains an integer ai(∀i,0≤ai≤10000) representing the number of the i-th lake.

The i-th line of the next M lines contains two integers ui and vi representing the i-th river between the ui-th lake and vi-th lake. It is possible that ui=vi.

 
Output
For each test cases, output the largest lucky number. If it dose not have any path, output "Impossible".
 
Sample Input
2
3 2
3
4
5
1 2
2 3
4 3
1
2
3
4
1 2
2 3
2 4
 
Sample Output
2
Impossible
 
就是给出点和路 并且每个点上都有一个权值  要求走过所有的路 使得最后权值的异或和最大
 
题解:
  走过每一条路 明显为欧拉路问题
  欧拉路分为两种 1、欧拉回路 2、欧拉路径 
  即源点和汇点相同  和  源点和汇点不同
  在输入的时候去统计每一个点的度数 当每个点的度数都为偶数的时候为欧拉回路(一个入度 对应 一个出度), 当存在两个点的度数为奇数的时候为欧拉路径(源点有奇数个出度  汇点有奇数个入度)
  其他情况 impossible
  对于异或 同假异真 所以若某个点经过偶数次 则可以直接不计 只记奇数次的
  经过某个点的次数 即为 (度数+1)/2  所以遍历每个点的度数 算即可
  但这样算出来的是 源点和汇点不同的情况的
   如图从1到3 1和3的度数均为1 所以1和3经过(1+1)/2次  2的度数为2 所以为(2+1)/2 次
 
那么源点和汇点相同的怎么算呢
  如图 我们设以1为源点 我们只需要枚举源点 再异或一次 即可 如图 虽然1和3之间比上图多了一条边 但是算出来的经过的次数依然和上图的一样1和3是1次  2也是1次  但从1出发最后又回到1了 所以1 经过了两次 所以枚举源点即可
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int w[maxn], drgee[maxn];
int n, m;
int solve()
{
int cnt = ;
rap(i, , n)
if(drgee[i] & )
cnt++;
if(cnt != && cnt != )
return -;
int res = ;
rap(i, , n)
{
drgee[i] = (drgee[i] + ) >> ;
if(drgee[i] & )
res ^= w[i];
}
int tmp = ;
if(cnt == )
{
rap(i, , n)
{
tmp = max(tmp, res^w[i]);
}
res = tmp;
}
return res;
} int main()
{
int T;
rd(T);
while(T--)
{
mem(drgee, );
rd(n); rd(m);
rap(i, , n)
rd(w[i]);
rep(i, , m)
{
int u, v;
rd(u); rd(v);
drgee[u]++;
drgee[v]++;
} int res = solve();
if(res == -)
{
printf("Impossible\n");
continue;
}
else
{
printf("%d\n", res); } } return ;
}
 

The Best Path HDU - 5883(欧拉回路 && 欧拉路径)的更多相关文章

  1. The Best Path HDU - 5883 欧拉通路

    图(无向图或有向图)中恰好通过所有边一次且经过所有顶点的的通路成为欧拉通路,图中恰好通过所有边一次且经过所有顶点的回路称为欧拉回路,具有欧拉回路的图称为欧拉图,具有欧拉通路而无欧拉回路的图称为半欧拉图 ...

  2. HDU 5883 欧拉回路

    题面: 思路: 这里面有坑啊啊啊-.. 先普及一下姿势: 判断无向图欧拉路的方法: 图连通,只有两个顶点是奇数度,其余都是偶数度的. 判断无向图欧拉回路的方法: 图连通,所有顶点都是偶数度. 重点:图 ...

  3. HDU 5883 F - The Best Path 欧拉通路 & 欧拉回路

    给定一个图,要求选一个点作为起点,然后经过每条边一次,然后把访问过的点异或起来(访问一次就异或一次),然后求最大值. 首先为什么会有最大值这样的分类?就是因为你开始点选择不同,欧拉回路的结果不同,因为 ...

  4. HDU 5883 The Best Path (欧拉路或者欧拉回路)

    题意: n 个点 m 条无向边的图,找一个欧拉通路/回路使得这个路径所有结点的异或值最大. 析:由欧拉路性质,奇度点数量为0或2.一个节点被进一次出一次,度减2,产生一次贡献,因此节点 i 的贡献为 ...

  5. 【刷题】HDU 5883 The Best Path

    Problem Description Alice is planning her travel route in a beautiful valley. In this valley, there ...

  6. HDU 5883 欧拉路径异或值最大 水题

    The Best Path Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tot ...

  7. HDU 5883 The Best Path

    The Best Path Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tot ...

  8. hdu 1116 欧拉回路+并查集

    http://acm.hdu.edu.cn/showproblem.php?pid=1116 给你一些英文单词,判断所有单词能不能连成一串,类似成语接龙的意思.但是如果有多个重复的单词时,也必须满足这 ...

  9. hdu 6311 欧拉回路

    题意:求一个图(不一定联通)最小额外连接几条边,使得可以一笔画出来 大致做法 1.找出联通块 2.统计每一个连通块里面度数为奇数的点的个数, 有一个性质 一个图能够用一笔画出来,奇数点的个数不超过2个 ...

随机推荐

  1. Python学习环境搭建——VMware,Ubuntu,Anaconda,Pycharm

    1.安装VMware虚拟机,版本是14.1.2(含注册码) 链接:https://pan.baidu.com/s/1ffNLONDjEMYDAenE36gRpA 密码:yazx 注:我的电脑分辨率较高 ...

  2. jmeter—操作数据库

    添加JDBC Request,添加需要执行的sql语句 在这个界面需要配置Variabke Name,内容要与上表中的Name值相同:数据库的用户名.密码.URL.驱动这些基本信息要在这里配置:其他选 ...

  3. [环境配置]Ubuntu16.04下编译安装gcc6.3.0

    上一篇的SVS要用gcc6.3编译,否则结果不正确,本来以为gcc很好装,结果发现用apt-get安装gcc6只能安装6.5版本,代码作者奇特的要求只能用gcc6.3,没办法只能用源码装了,期间碰见了 ...

  4. MyEclipse 和 eclipse 最简单的安装Jetty容器插件

    一.MyEclipse安装jetty 1.下载jetty插件  http://pan.baidu.com/s/1nuMYGNv 2.将下载后的jetty插件放到安装MyEclipse目录的MyEcli ...

  5. IDEA 2018 最新激活码 License server

    IDEA 2018 最新激活码 License server 总会有一个属于适合你的!嘻嘻 http://hb5.s.osidea.cc:1017 http://idea.youbbs.org htt ...

  6. Vue实现双向绑定的原理以及响应式数据

    一.vue中的响应式属性 Vue中的数据实现响应式绑定 1.对象实现响应式: 是在初始化的时候利用definePrototype的定义set和get过滤器,在进行组件模板编译时实现water的监听搜集 ...

  7. 感谢Thunder团队

    不知不觉中,团队开发的beta版本都已经结束.开发的路上我们一起解决了很多难题,相互帮助走到了现在. 首先我想感谢组长王航.认真负责合理分配任务,使得我们每次发布都可以顺利并且按时完成.感谢胡佑蓉,李 ...

  8. 从数据库表导出为excel表格

    package com.test.daotest;   import java.io.FileNotFoundException; import java.io.FileOutputStream; i ...

  9. P4: Programming Protocol-Independent Packet Processors

    P4: Programming Protocol-Independent Packet Processors 摘要 P4是一门高级语言,用于编程与协议无关的数据包处理器.P4与SDN控制协议相关联,类 ...

  10. python learning GUI

    Hello world1 from tkinter import * # 第一步是导入Tkinter包的所有内容 class Application(Frame): # 第二步是从Frame派生一个A ...