The Best Path

Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 2401    Accepted Submission(s): 945

Problem Description
Alice is planning her travel route in a beautiful valley. In this valley, there are N lakes, and M rivers linking these lakes. Alice wants to start her trip from one lake, and enjoys the landscape by boat. That means she need to set up a path which go through every river exactly once. In addition, Alice has a specific number (a1,a2,...,an) for each lake. If the path she finds is P0→P1→...→Pt, the lucky number of this trip would be aP0XORaP1XOR...XORaPt. She want to make this number as large as possible. Can you help her?
 
Input
The first line of input contains an integer t, the number of test cases. t test cases follow.

For each test case, in the first line there are two positive integers N (N≤100000) and M (M≤500000), as described above. The i-th line of the next Nlines contains an integer ai(∀i,0≤ai≤10000) representing the number of the i-th lake.

The i-th line of the next M lines contains two integers ui and vi representing the i-th river between the ui-th lake and vi-th lake. It is possible that ui=vi.

 
Output
For each test cases, output the largest lucky number. If it dose not have any path, output "Impossible".
 
Sample Input
2
3 2
3
4
5
1 2
2 3
4 3
1
2
3
4
1 2
2 3
2 4
 
Sample Output
2
Impossible
 
就是给出点和路 并且每个点上都有一个权值  要求走过所有的路 使得最后权值的异或和最大
 
题解:
  走过每一条路 明显为欧拉路问题
  欧拉路分为两种 1、欧拉回路 2、欧拉路径 
  即源点和汇点相同  和  源点和汇点不同
  在输入的时候去统计每一个点的度数 当每个点的度数都为偶数的时候为欧拉回路(一个入度 对应 一个出度), 当存在两个点的度数为奇数的时候为欧拉路径(源点有奇数个出度  汇点有奇数个入度)
  其他情况 impossible
  对于异或 同假异真 所以若某个点经过偶数次 则可以直接不计 只记奇数次的
  经过某个点的次数 即为 (度数+1)/2  所以遍历每个点的度数 算即可
  但这样算出来的是 源点和汇点不同的情况的
   如图从1到3 1和3的度数均为1 所以1和3经过(1+1)/2次  2的度数为2 所以为(2+1)/2 次
 
那么源点和汇点相同的怎么算呢
  如图 我们设以1为源点 我们只需要枚举源点 再异或一次 即可 如图 虽然1和3之间比上图多了一条边 但是算出来的经过的次数依然和上图的一样1和3是1次  2也是1次  但从1出发最后又回到1了 所以1 经过了两次 所以枚举源点即可
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
int w[maxn], drgee[maxn];
int n, m;
int solve()
{
int cnt = ;
rap(i, , n)
if(drgee[i] & )
cnt++;
if(cnt != && cnt != )
return -;
int res = ;
rap(i, , n)
{
drgee[i] = (drgee[i] + ) >> ;
if(drgee[i] & )
res ^= w[i];
}
int tmp = ;
if(cnt == )
{
rap(i, , n)
{
tmp = max(tmp, res^w[i]);
}
res = tmp;
}
return res;
} int main()
{
int T;
rd(T);
while(T--)
{
mem(drgee, );
rd(n); rd(m);
rap(i, , n)
rd(w[i]);
rep(i, , m)
{
int u, v;
rd(u); rd(v);
drgee[u]++;
drgee[v]++;
} int res = solve();
if(res == -)
{
printf("Impossible\n");
continue;
}
else
{
printf("%d\n", res); } } return ;
}
 

The Best Path HDU - 5883(欧拉回路 && 欧拉路径)的更多相关文章

  1. The Best Path HDU - 5883 欧拉通路

    图(无向图或有向图)中恰好通过所有边一次且经过所有顶点的的通路成为欧拉通路,图中恰好通过所有边一次且经过所有顶点的回路称为欧拉回路,具有欧拉回路的图称为欧拉图,具有欧拉通路而无欧拉回路的图称为半欧拉图 ...

  2. HDU 5883 欧拉回路

    题面: 思路: 这里面有坑啊啊啊-.. 先普及一下姿势: 判断无向图欧拉路的方法: 图连通,只有两个顶点是奇数度,其余都是偶数度的. 判断无向图欧拉回路的方法: 图连通,所有顶点都是偶数度. 重点:图 ...

  3. HDU 5883 F - The Best Path 欧拉通路 & 欧拉回路

    给定一个图,要求选一个点作为起点,然后经过每条边一次,然后把访问过的点异或起来(访问一次就异或一次),然后求最大值. 首先为什么会有最大值这样的分类?就是因为你开始点选择不同,欧拉回路的结果不同,因为 ...

  4. HDU 5883 The Best Path (欧拉路或者欧拉回路)

    题意: n 个点 m 条无向边的图,找一个欧拉通路/回路使得这个路径所有结点的异或值最大. 析:由欧拉路性质,奇度点数量为0或2.一个节点被进一次出一次,度减2,产生一次贡献,因此节点 i 的贡献为 ...

  5. 【刷题】HDU 5883 The Best Path

    Problem Description Alice is planning her travel route in a beautiful valley. In this valley, there ...

  6. HDU 5883 欧拉路径异或值最大 水题

    The Best Path Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tot ...

  7. HDU 5883 The Best Path

    The Best Path Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tot ...

  8. hdu 1116 欧拉回路+并查集

    http://acm.hdu.edu.cn/showproblem.php?pid=1116 给你一些英文单词,判断所有单词能不能连成一串,类似成语接龙的意思.但是如果有多个重复的单词时,也必须满足这 ...

  9. hdu 6311 欧拉回路

    题意:求一个图(不一定联通)最小额外连接几条边,使得可以一笔画出来 大致做法 1.找出联通块 2.统计每一个连通块里面度数为奇数的点的个数, 有一个性质 一个图能够用一笔画出来,奇数点的个数不超过2个 ...

随机推荐

  1. 【Unity Shader】(八) ------ 高级纹理之立方体纹理及光线反射、折射的实现

    笔者使用的是 Unity 2018.2.0f2 + VS2017,建议读者使用与 Unity 2018 相近的版本,避免一些因为版本不一致而出现的问题.    [Unity Shader](三) -- ...

  2. [Processing] 弹球

    PVector localPos = new PVector(0,0);//起始位置 PVector velocity;//速度方向 float speed = 20;//速度大小 void setu ...

  3. [egret]白鹭引擎打包安卓包体积太大减小

    萌新第一次用egret打安卓包,发现裸包22M+,吃惊到吃手手. 上网搜查无果. 可能原因是egret优化过一波打包,变得更便利了,网上对新版本打包比较少讨论. 解决方法: egret-android ...

  4. gitlab+jenkins持续集成(二)

    1.jenkins服务器上的配置 -bin.tar.gz -C /opt/ yum install -y git /conf/settings.xml #只需更改maven的地址 <?xml v ...

  5. 03-matplotlib-折线图

    import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates ''' 折线图,用直线段将各数 ...

  6. CUDA、CUDNN在Mac Book Pro上安装的问题

    由于原版MacOS自带Nvidia驱动版本过低,导致最新版本CUDA安装后无法运行.具体症状为:在编译时一切正常,在运行CUDA相关程序时报错: CUDA driver version is insu ...

  7. xml配置文件特殊符号的处理方法

    2017.7.19遇到问题:偶然出现“认证失败,请重新登录”的现象   在xml中英文问号“?”是可以被正常解析的,但是以下这几种符号是不能正常解析的:分别是“&”.“<”.“>” ...

  8. Linux上安装设置mysql 5.7.24

    一,准备 1,先查看Linux是32位还是64位 getconf LONG_BIT 如果返回的是32,那么就是32位 如果返回的是64,那么就是64位 2,如果服务器不能联网,就先去官网下载好压缩包, ...

  9. Scrum Meeting 4 -2014.11.8

    开始了apec的放假,希望大家能处理好工作与休息的时间分配,不要玩疯了啊. 各任务都开始实现了自己的算法,需要部署的服务器我也进去看了看情况,希望最后能部署成功. 最近发现的一些关于上一届实现的问题, ...

  10. 作业1-MathExam

    MathExam 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 10 30 • Estim ...