Codeforces Round #157 (Div. 1) B. Little Elephant and Elections 数位dp+搜索
题目链接:
http://codeforces.com/problemset/problem/258/B
B. Little Elephant and Elections
time limit per test2 secondsmemory limit per test256 megabytes
#### 问题描述
> There have recently been elections in the zoo. Overall there were 7 main political parties: one of them is the Little Elephant Political Party, 6 other parties have less catchy names.
>
> Political parties find their number in the ballot highly important. Overall there are m possible numbers: 1, 2, ..., m. Each of these 7 parties is going to be assigned in some way to exactly one number, at that, two distinct parties cannot receive the same number.
>
> The Little Elephant Political Party members believe in the lucky digits 4 and 7. They want to evaluate their chances in the elections. For that, they need to find out, how many correct assignments are there, such that the number of lucky digits in the Little Elephant Political Party ballot number is strictly larger than the total number of lucky digits in the ballot numbers of 6 other parties.
>
> Help the Little Elephant Political Party, calculate this number. As the answer can be rather large, print the remainder from dividing it by 1000000007 (109 + 7).
#### 输入
> A single line contains a single positive integer m (7 ≤ m ≤ 109) — the number of possible numbers in the ballot.
#### 输出
> In a single line print a single integer — the answer to the problem modulo 1000000007 (109 + 7).
样例输入
7
样例输出
0
样例输入
8
样例输出
1440
题意
求[1,m]之间选7个数,保证其中一个数数位中包含4,7的个数比其他6个数的4,7的个数都加起来的都多。求满足条件的组合有多少种。
题解
先用数位dp求出包含k个4或7的数有多少个,然后再枚举最大的那个数有多少个4或7,去深搜回溯所有满足条件的情况。
代码
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef __int64 LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
const int mod=1e9+7;
int m;
int Num[11];
int arr[11],tot;
LL dp[11][11];
///ismax标记表示前驱是否是边界值
///ser标记前驱是否是前导零
LL dfs(int len,int k, bool ismax) {
if(k<0) return 0;
if (len == 0) {
///递归边界,这说明前驱都合法了
return k==0;
}
if (!ismax&&dp[len][k]>=0) return dp[len][k];
LL res = 0;
int ed = ismax ? arr[len] : 9;
for(int i=0;i<=ed;i++){
res+=dfs(len-1,(i==4||i==7)?k-1:k,ismax&&i==ed);
}
return ismax ? res : dp[len][k] = res;
}
LL ans;
void dfs2(int num,int ma,int cnt,LL sum){
if(cnt>=ma) return;
if(num==6){
ans=(ans+sum)%mod;
return ;
}
for(int i=0;i<=9;i++){
Num[i]--;
dfs2(num+1,ma,cnt+i,sum*(Num[i]+1)%mod);
Num[i]++;
}
}
LL solve(LL x,int k) {
tot = 0;
while (x) { arr[++tot] = x % 10; x /= 10; }
return dfs(tot,k,true);
}
int main() {
clr(dp,-1);
scf("%d",&m);
for(int i=0;i<=9;i++) Num[i]=solve(m,i);
Num[0]--;
ans=0;
for(int i=0;i<=9;i++){
Num[i]--;
dfs2(0,i,0,Num[i]+1);
Num[i]++;
}
prf("%I64d\n",ans);
return 0;
}
//end-----------------------------------------------------------------------
Codeforces Round #157 (Div. 1) B. Little Elephant and Elections 数位dp+搜索的更多相关文章
- Codeforces Round #157 (Div. 2) D. Little Elephant and Elections(数位DP+枚举)
数位DP部分,不是很难.DP[i][j]前i位j个幸运数的个数.枚举写的有点搓... #include <cstdio> #include <cstring> using na ...
- Codeforces Round #235 (Div. 2) D. Roman and Numbers (数位dp、状态压缩)
D. Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standar ...
- Codeforces Round #597 (Div. 2) F. Daniel and Spring Cleaning 数位dp
F. Daniel and Spring Cleaning While doing some spring cleaning, Daniel found an old calculator that ...
- Codeforces Round #460 (Div. 2) B Perfect Number(二分+数位dp)
题目传送门 B. Perfect Number time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Codeforces Round #157 (Div. 2)
A. Little Elephant and Chess 模拟. B. Little Elephant and Magic Square 枚举左上角,计算其余两个位置的值,在\(3\times 3\) ...
- Codeforces Round #396 (Div. 2) A B C D 水 trick dp 并查集
A. Mahmoud and Longest Uncommon Subsequence time limit per test 2 seconds memory limit per test 256 ...
- Codeforces Round #136 (Div. 1)C. Little Elephant and Shifts multiset
C. Little Elephant and Shifts Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/pro ...
- 字符串(后缀自动机):Codeforces Round #129 (Div. 1) E.Little Elephant and Strings
E. Little Elephant and Strings time limit per test 3 seconds memory limit per test 256 megabytes inp ...
- Codeforces Round #136 (Div. 1) B. Little Elephant and Array
B. Little Elephant and Array time limit per test 4 seconds memory limit per test 256 megabytes input ...
随机推荐
- STM32单片机复位后GPIO电平状态
stm32单片机gpio共有八种工作模式,如下图: stm32单片机是一个低功耗的处理器,当复位以后,gpio默认是高阻状态,也就是浮空输入.这样的好处是: 1.降低了单片机的功耗 2.把gpio模式 ...
- git 源码学习(init-db) 提交版本号 083c516331
写在前面的废话: 学完git之后,还是感觉云里雾里的,于是乎,就想到了通过学习git源码,来加深git的熟练度,同时学习一下c语言编程. git源码学习,逐步分析 这篇帖子是逐步分析git源码的,将g ...
- WPF 扩大,回弹效果
原文:WPF 扩大,回弹效果 <Window x:Class="Fish.AccountBook.View.Test.PanelWindow" xmlns="htt ...
- Openstack入门篇(十六)之Cinder服务的部署与测试
1.理解块存储服务 操作系统获得存储空间的方式一般有两种: 通过某种协议(SAS,SCSI,SAN,iSCSI 等)挂接裸硬盘,然后分区.格式化.创建文件系统:或者直接使用裸硬盘存储数据(数据库) 通 ...
- opencv-Drawing Functions in OpenCV
1.opencv简单画图形 # coding = utf-8 # 画线.长方形.圆等 import numpy as np import cv2 # 返回一个数组 img = np.zeros((51 ...
- 洛咕P3250 [HNOI2016]网络 整体二分
这题太神仙了必须写博客... 显然可以想到二分答案.二分一个答案mid,如果所有长度\(\geq mid\)的路径都过x,那么答案一定\(<mid\),否则答案\(\geq mid\). 那么就 ...
- 大数据中Hadoop集群搭建与配置
前提环境是之前搭建的4台Linux虚拟机,详情参见 Linux集群搭建 该环境对应4台服务器,192.168.1.60.61.62.63,其中60为主机,其余为从机 软件版本选择: Java:JDK1 ...
- C# 连接MongoDB,含用户验证
配置文件中链接地址:mongodb://test:123456@192.168.168.186:9999/temp 读取配置文件: /// <summary> /// 构造函数 /// & ...
- LintCode——尾部的零
尾部的零:设计一个算法,计算出n阶乘中尾部零的个数 样例:11! = 39916800.因此应该返回2 分析:假如你把1 × 2 ×3× 4 ×……×N中每一个因数分解质因数,例如 1 × 2 × 3 ...
- PHP的学习路线规划
第一阶段:WEB的快速入门 前期入门学习我们需要学一些HTML+CSS+JS前端的一些技术,这个阶段不需要太深入的学习,学习到可以制作出一个像样点的静态页面就可以了.因为大家是学习PHP,对于新人来说 ...