Codeforces Round #157 (Div. 1) B. Little Elephant and Elections 数位dp+搜索
题目链接:
http://codeforces.com/problemset/problem/258/B
B. Little Elephant and Elections
time limit per test2 secondsmemory limit per test256 megabytes
#### 问题描述
> There have recently been elections in the zoo. Overall there were 7 main political parties: one of them is the Little Elephant Political Party, 6 other parties have less catchy names.
>
> Political parties find their number in the ballot highly important. Overall there are m possible numbers: 1, 2, ..., m. Each of these 7 parties is going to be assigned in some way to exactly one number, at that, two distinct parties cannot receive the same number.
>
> The Little Elephant Political Party members believe in the lucky digits 4 and 7. They want to evaluate their chances in the elections. For that, they need to find out, how many correct assignments are there, such that the number of lucky digits in the Little Elephant Political Party ballot number is strictly larger than the total number of lucky digits in the ballot numbers of 6 other parties.
>
> Help the Little Elephant Political Party, calculate this number. As the answer can be rather large, print the remainder from dividing it by 1000000007 (109 + 7).
#### 输入
> A single line contains a single positive integer m (7 ≤ m ≤ 109) — the number of possible numbers in the ballot.
#### 输出
> In a single line print a single integer — the answer to the problem modulo 1000000007 (109 + 7).
样例输入
7
样例输出
0
样例输入
8
样例输出
1440
题意
求[1,m]之间选7个数,保证其中一个数数位中包含4,7的个数比其他6个数的4,7的个数都加起来的都多。求满足条件的组合有多少种。
题解
先用数位dp求出包含k个4或7的数有多少个,然后再枚举最大的那个数有多少个4或7,去深搜回溯所有满足条件的情况。
代码
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef __int64 LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
const int mod=1e9+7;
int m;
int Num[11];
int arr[11],tot;
LL dp[11][11];
///ismax标记表示前驱是否是边界值
///ser标记前驱是否是前导零
LL dfs(int len,int k, bool ismax) {
if(k<0) return 0;
if (len == 0) {
///递归边界,这说明前驱都合法了
return k==0;
}
if (!ismax&&dp[len][k]>=0) return dp[len][k];
LL res = 0;
int ed = ismax ? arr[len] : 9;
for(int i=0;i<=ed;i++){
res+=dfs(len-1,(i==4||i==7)?k-1:k,ismax&&i==ed);
}
return ismax ? res : dp[len][k] = res;
}
LL ans;
void dfs2(int num,int ma,int cnt,LL sum){
if(cnt>=ma) return;
if(num==6){
ans=(ans+sum)%mod;
return ;
}
for(int i=0;i<=9;i++){
Num[i]--;
dfs2(num+1,ma,cnt+i,sum*(Num[i]+1)%mod);
Num[i]++;
}
}
LL solve(LL x,int k) {
tot = 0;
while (x) { arr[++tot] = x % 10; x /= 10; }
return dfs(tot,k,true);
}
int main() {
clr(dp,-1);
scf("%d",&m);
for(int i=0;i<=9;i++) Num[i]=solve(m,i);
Num[0]--;
ans=0;
for(int i=0;i<=9;i++){
Num[i]--;
dfs2(0,i,0,Num[i]+1);
Num[i]++;
}
prf("%I64d\n",ans);
return 0;
}
//end-----------------------------------------------------------------------
Codeforces Round #157 (Div. 1) B. Little Elephant and Elections 数位dp+搜索的更多相关文章
- Codeforces Round #157 (Div. 2) D. Little Elephant and Elections(数位DP+枚举)
数位DP部分,不是很难.DP[i][j]前i位j个幸运数的个数.枚举写的有点搓... #include <cstdio> #include <cstring> using na ...
- Codeforces Round #235 (Div. 2) D. Roman and Numbers (数位dp、状态压缩)
D. Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standar ...
- Codeforces Round #597 (Div. 2) F. Daniel and Spring Cleaning 数位dp
F. Daniel and Spring Cleaning While doing some spring cleaning, Daniel found an old calculator that ...
- Codeforces Round #460 (Div. 2) B Perfect Number(二分+数位dp)
题目传送门 B. Perfect Number time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Codeforces Round #157 (Div. 2)
A. Little Elephant and Chess 模拟. B. Little Elephant and Magic Square 枚举左上角,计算其余两个位置的值,在\(3\times 3\) ...
- Codeforces Round #396 (Div. 2) A B C D 水 trick dp 并查集
A. Mahmoud and Longest Uncommon Subsequence time limit per test 2 seconds memory limit per test 256 ...
- Codeforces Round #136 (Div. 1)C. Little Elephant and Shifts multiset
C. Little Elephant and Shifts Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/pro ...
- 字符串(后缀自动机):Codeforces Round #129 (Div. 1) E.Little Elephant and Strings
E. Little Elephant and Strings time limit per test 3 seconds memory limit per test 256 megabytes inp ...
- Codeforces Round #136 (Div. 1) B. Little Elephant and Array
B. Little Elephant and Array time limit per test 4 seconds memory limit per test 256 megabytes input ...
随机推荐
- 前端实现文件在线预览txt,pdf,doc,xls,ppt几种格式
做法就是使用iframe标签 1.text,pdf的文件预览 <iframe class="filename" :src="文件的地址" width='1 ...
- FPGA入门实例一:LFSR
一:任务: 要求使用Verilog语言在Xilinx Virtex-6开发板上实现线性反馈移位寄存器(LFSR)的硬件逻辑设计. 二:前期准备: 基本上完成一个简单的设计需要用到以下几个软件 逻辑:U ...
- mybatis第一天——入门与概述
大纲摘要: 1.mybatis的介绍 2.Mybatis的入门 a) 使用jdbc操作数据库存在的问题 b) Mybatis的架构 c) Mybatis的入门程序 3.Dao的开发方法 a) 原始da ...
- webBrowser.Document.Cookie取不到HttpOnly的Cookie,取Cookie不完整
在做数据采集时,有些网站需要输入验证码,但各网站验证码都不同,不可能有完美的识别验证码的代码,所以我也没去研究,我所采取的方案是:在winform里通过WebBrowser调用网页先手动登录系统,然后 ...
- Linux下开发python django程序(django数据库多对多关系)
1.多对多关系数据访问 models.py设置 from django.db import models # Create your models here. sex_choices=( ('f',' ...
- SpringMVC初写(三)Controller的生命周期
Spring框架默认创建的对象的方式是单例,所以业务控制器Controller也是一个单例对象 由此可证明,无论是同一次请求还是同一次会话和不同请求它的对象都是相同的 然而由于对象是单例的,随之而来的 ...
- 4-[多进程]-互斥锁、Queue队列、生产者消费者
1.互斥锁 (1)为什么需要互斥锁 进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的, 而共享带来的是竞争,竞争带来的结果就是错乱,如下 #并发运行,效率 ...
- CF 1114 C. Trailing Loves (or L'oeufs?)
C. Trailing Loves (or L'oeufs?) 链接 题意: 问n!化成b进制后,末尾的0的个数. 分析: 考虑十进制的时候怎么求的,类比一下. 十进制转化b进制的过程中是不断mod ...
- Codeforces 908 D.New Year and Arbitrary Arrangement (概率&期望DP)
题目链接:New Year and Arbitrary Arrangement 题意: 有一个ab字符串,初始为空. 用Pa/(Pa+Pb)的概率在末尾添加字母a,有 Pb/(Pa+Pb)的概率在末尾 ...
- c3p0 ComboPooledDataSource无法识别的问题
maven项目下,基本就是导错包了的问题. 下面那个才是连接池的.