Description

You are in charge of setting up the press room for the inaugural meeting of the United Nations Internet eXecutive (UNIX), which has an international mandate to make the free flow of information and ideas on the Internet as cumbersome and bureaucratic as possible. 
Since the room was designed to accommodate reporters and journalists from around the world, it is equipped with electrical receptacles to suit the different shapes of plugs and voltages used by appliances in all of the countries that existed when the room was built. Unfortunately, the room was built many years ago when reporters used very few electric and electronic devices and is equipped with only one receptacle of each type. These days, like everyone else, reporters require many such devices to do their jobs: laptops, cell phones, tape recorders, pagers, coffee pots, microwave ovens, blow dryers, curling 
irons, tooth brushes, etc. Naturally, many of these devices can operate on batteries, but since the meeting is likely to be long and tedious, you want to be able to plug in as many as you can. 
Before the meeting begins, you gather up all the devices that the reporters would like to use, and attempt to set them up. You notice that some of the devices use plugs for which there is no receptacle. You wonder if these devices are from countries that didn't exist when the room was built. For some receptacles, there are several devices that use the corresponding plug. For other receptacles, there are no devices that use the corresponding plug. 
In order to try to solve the problem you visit a nearby parts supply store. The store sells adapters that allow one type of plug to be used in a different type of outlet. Moreover, adapters are allowed to be plugged into other adapters. The store does not have adapters for all possible combinations of plugs and receptacles, but there is essentially an unlimited supply of the ones they do have.

Input

The input will consist of one case. The first line contains a single positive integer n (1 <= n <= 100) indicating the number of receptacles in the room. The next n lines list the receptacle types found in the room. Each receptacle type consists of a string of at most 24 alphanumeric characters. The next line contains a single positive integer m (1 <= m <= 100) indicating the number of devices you would like to plug in. Each of the next m lines lists the name of a device followed by the type of plug it uses (which is identical to the type of receptacle it requires). A device name is a string of at most 24 alphanumeric 
characters. No two devices will have exactly the same name. The plug type is separated from the device name by a space. The next line contains a single positive integer k (1 <= k <= 100) indicating the number of different varieties of adapters that are available. Each of the next k lines describes a variety of adapter, giving the type of receptacle provided by the adapter, followed by a space, followed by the type of plug.

Output

A line containing a single non-negative integer indicating the smallest number of devices that cannot be plugged in.

Sample Input

4
A
B
C
D
5
laptop B
phone C
pager B
clock B
comb X
3
B X
X A
X D

Sample Output

1

现在有n个插头,m个用电器,每个用电器有一个自己的插口,还有k个插头转化器(将插头从一种转换为另一种),问你最少有多少个充电器充不上电
主要思路就是建图,我们把源点与每个用电器建一条容量为1的边,每个用电器跟自己的插头建一条容量为1的边,在对于每个转换器的头跟尾建一条容量为inf的边,跑最大流即可
为什么要对转换器建一条inf的边呢?因为不能让这条边容量的大小卡住了源点的流,所以容量尽可能大
细节!!!!!输完n个插头之后还可能出现新的插头,别忘了继续加入map
maxn开大一点
#include <string>
#include <cstdio>
#include <cstring>
#include <map>
#include <cmath>
#include <queue>
#include <iostream>
using namespace std;
#define inf 0x3f3f3f3f
const int maxn = ;
int c[maxn][maxn];
int dep[maxn];
int cur[maxn];
int n,m,k;
map<string,int> name;
int tot;
int bfs (int s,int t)
{
memset(dep,-,sizeof dep);
queue<int> q;
while (!q.empty()) q.pop();
dep[s] = ;
q.push(s);
while (!q.empty()){
int u=q.front();
q.pop();
for (int v=;v<=;++v){
if (c[u][v]>&&dep[v]==-){
dep[v]=dep[u]+;
q.push(v);
}
}
}
return dep[t]!=-;
}
int dfs (int u,int mi,int t)
{
if (u==t)
return mi;
int tmp;
for (int &v=cur[u];v<=;++v){
if (c[u][v]>&&dep[v]==dep[u]+&&(tmp=dfs(v,min(mi,c[u][v]),t))){
c[u][v]-=tmp;
c[v][u]+=tmp;
return tmp;
}
}
return ;
}
int dinic ()
{
int ans = ;
int tmp;
while (bfs(,)){
while (){
for (int i=;i<maxn;++i) cur[i]=;
tmp = dfs(,inf,);
if (tmp==)
break;
ans+=tmp;
}
}
return ans;
}
int main()
{
//freopen("de.txt","r",stdin);
while(~scanf("%d",&n)){
memset(c,,sizeof c);
tot=;
for (int i=;i<=n;++i){
string str;
cin>>str;
name[str]=i;
c[name[str]][]=;
tot++;
}
scanf("%d",&m);
for (int i=;i<=m;++i){
string stra,strb;
cin>>stra>>strb;
name[stra]=tot++;
if (!name[strb]) name[strb]=tot++;
c[][name[stra]]=;
c[name[stra]][name[strb]]=;
}
scanf("%d",&k);
for (int i=;i<k;++i){
string a,b;
cin>>a>>b;
if (!name[a]) name[a]=tot++;
if (!name[b]) name[b]=tot++;
c[name[a]][name[b]]=inf;
}
printf("%d\n",m-dinic());
}
return ;
}

 

POJ A Plug for UNIX (最大流 建图)的更多相关文章

  1. poj 3281 最大流+建图

    很巧妙的思想 转自:http://www.cnblogs.com/kuangbin/archive/2012/08/21/2649850.html 本题能够想到用最大流做,那真的是太绝了.建模的方法很 ...

  2. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  3. poj3680 Intervals 区间k覆盖问题 最小费用最大流 建图巧妙

    /** 题目:poj3680 Intervals 区间k覆盖问题 最小费用最大流 建图巧妙 链接:http://poj.org/problem?id=3680 题意:给定n个区间,每个区间(ai,bi ...

  4. hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙

    /** 题目:hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4106 ...

  5. 图论--网络流--最小割 HDU 2485 Destroying the bus stations(最短路+限流建图)

    Problem Description Gabiluso is one of the greatest spies in his country. Now he's trying to complet ...

  6. 【poj1087/uva753】A Plug for UNIX(最大流)

    A Plug for UNIX   Description You are in charge of setting up the press room for the inaugural meeti ...

  7. TZOJ 1911 A Plug for UNIX(最大流)

    描述 You are in charge of setting up the press room for the inaugural meeting of the United Nations In ...

  8. POJ1087:A Plug for UNIX(最大流)

    A Plug for UNIX 题目链接:https://vjudge.net/problem/POJ-1087 Description: You are in charge of setting u ...

  9. POJ1087 A Plug for UNIX —— 最大流

    题目链接:https://vjudge.net/problem/POJ-1087 A Plug for UNIX Time Limit: 1000MS   Memory Limit: 65536K T ...

随机推荐

  1. objc_setAssociatedObject 关联对象

    使用场景:在分类中,不允许创建实例变量,这里就解决了此问题 参考: https://www.cnblogs.com/someonelikeyou/p/7162613.html 属性的实质:就是实例变量 ...

  2. JS中数据结构之图

    图由边的集合及顶点的集合组成.边是有方向的是有序图(有向图),否则就是无序图(无向图).图中的一系列顶点构成路径,路径中所有的顶点都由边连接.路径的长度用路径中第一个顶点到最后一个顶点之间边的数量表示 ...

  3. webpack对html模板的处理

    一.打包html模板到相应目录并且引入js 需要安装 html-webpack-plugin 然后在plugins里实例化 new HtmlWebpackPlugin({ template:'./sr ...

  4. 【HDOJ6608】Fansblog(威尔逊定理)

    题意:给定质数p,求q!模p的值,其中q为小于p的最大质数 1e9<=p<=1e14 思路:根据质数密度近似分布可以暴力找q并检查 找到q后根据威尔逊定理: 把q+1到p-1这一段的逆元移 ...

  5. UOJ 450 【集训队作业2018】复读机——单位根反演

    题目:http://uoj.ac/problem/450 重要式子: \( e^x = \sum\limits_{i=0}^{\infty} \frac{x^i}{i!} \) \( ( e^{a*x ...

  6. ansible控制winserver笔记

    原文地址: https://www.cnblogs.com/kingleft/p/6391652.html 环境描述: ansible控制远程windows .系统必须是sp1 .安装framewor ...

  7. [CSP-S模拟测试]:Endless Fantasy(DFS)

    题目描述 中二少年$cenbo$幻想自己统治着$Euphoric\ Field$.由此他开始了$Endless\ Fantasy$.$Euphoric\ Field$有$n$座城市,$m$个民族.这些 ...

  8. [CSP-S模拟测试]:english(可持久化Trie+启发式合并)

    题目传送门(内部题24) 输入格式 第一行有$3$个整数$n,opt$,$opt$的意义将在输出格式中提到.第二行有$n$个整数,第$i$个整数表示$a_i$. 输出格式 若$opt=1$,输出一行一 ...

  9. Codeforces 510C (拓扑排序)

    原题:http://codeforces.com/problemset/problem/510/C C. Fox And Names time limit per test:2 seconds mem ...

  10. JAVA中STL使用

    Vector:和c++的vector使用方法类似. Vector<Integer> vec=new Vector<> (); ArrayList:Java.util.Array ...