Description

You are in charge of setting up the press room for the inaugural meeting of the United Nations Internet eXecutive (UNIX), which has an international mandate to make the free flow of information and ideas on the Internet as cumbersome and bureaucratic as possible. 
Since the room was designed to accommodate reporters and journalists from around the world, it is equipped with electrical receptacles to suit the different shapes of plugs and voltages used by appliances in all of the countries that existed when the room was built. Unfortunately, the room was built many years ago when reporters used very few electric and electronic devices and is equipped with only one receptacle of each type. These days, like everyone else, reporters require many such devices to do their jobs: laptops, cell phones, tape recorders, pagers, coffee pots, microwave ovens, blow dryers, curling 
irons, tooth brushes, etc. Naturally, many of these devices can operate on batteries, but since the meeting is likely to be long and tedious, you want to be able to plug in as many as you can. 
Before the meeting begins, you gather up all the devices that the reporters would like to use, and attempt to set them up. You notice that some of the devices use plugs for which there is no receptacle. You wonder if these devices are from countries that didn't exist when the room was built. For some receptacles, there are several devices that use the corresponding plug. For other receptacles, there are no devices that use the corresponding plug. 
In order to try to solve the problem you visit a nearby parts supply store. The store sells adapters that allow one type of plug to be used in a different type of outlet. Moreover, adapters are allowed to be plugged into other adapters. The store does not have adapters for all possible combinations of plugs and receptacles, but there is essentially an unlimited supply of the ones they do have.

Input

The input will consist of one case. The first line contains a single positive integer n (1 <= n <= 100) indicating the number of receptacles in the room. The next n lines list the receptacle types found in the room. Each receptacle type consists of a string of at most 24 alphanumeric characters. The next line contains a single positive integer m (1 <= m <= 100) indicating the number of devices you would like to plug in. Each of the next m lines lists the name of a device followed by the type of plug it uses (which is identical to the type of receptacle it requires). A device name is a string of at most 24 alphanumeric 
characters. No two devices will have exactly the same name. The plug type is separated from the device name by a space. The next line contains a single positive integer k (1 <= k <= 100) indicating the number of different varieties of adapters that are available. Each of the next k lines describes a variety of adapter, giving the type of receptacle provided by the adapter, followed by a space, followed by the type of plug.

Output

A line containing a single non-negative integer indicating the smallest number of devices that cannot be plugged in.

Sample Input

4
A
B
C
D
5
laptop B
phone C
pager B
clock B
comb X
3
B X
X A
X D

Sample Output

1

现在有n个插头,m个用电器,每个用电器有一个自己的插口,还有k个插头转化器(将插头从一种转换为另一种),问你最少有多少个充电器充不上电
主要思路就是建图,我们把源点与每个用电器建一条容量为1的边,每个用电器跟自己的插头建一条容量为1的边,在对于每个转换器的头跟尾建一条容量为inf的边,跑最大流即可
为什么要对转换器建一条inf的边呢?因为不能让这条边容量的大小卡住了源点的流,所以容量尽可能大
细节!!!!!输完n个插头之后还可能出现新的插头,别忘了继续加入map
maxn开大一点
#include <string>
#include <cstdio>
#include <cstring>
#include <map>
#include <cmath>
#include <queue>
#include <iostream>
using namespace std;
#define inf 0x3f3f3f3f
const int maxn = ;
int c[maxn][maxn];
int dep[maxn];
int cur[maxn];
int n,m,k;
map<string,int> name;
int tot;
int bfs (int s,int t)
{
memset(dep,-,sizeof dep);
queue<int> q;
while (!q.empty()) q.pop();
dep[s] = ;
q.push(s);
while (!q.empty()){
int u=q.front();
q.pop();
for (int v=;v<=;++v){
if (c[u][v]>&&dep[v]==-){
dep[v]=dep[u]+;
q.push(v);
}
}
}
return dep[t]!=-;
}
int dfs (int u,int mi,int t)
{
if (u==t)
return mi;
int tmp;
for (int &v=cur[u];v<=;++v){
if (c[u][v]>&&dep[v]==dep[u]+&&(tmp=dfs(v,min(mi,c[u][v]),t))){
c[u][v]-=tmp;
c[v][u]+=tmp;
return tmp;
}
}
return ;
}
int dinic ()
{
int ans = ;
int tmp;
while (bfs(,)){
while (){
for (int i=;i<maxn;++i) cur[i]=;
tmp = dfs(,inf,);
if (tmp==)
break;
ans+=tmp;
}
}
return ans;
}
int main()
{
//freopen("de.txt","r",stdin);
while(~scanf("%d",&n)){
memset(c,,sizeof c);
tot=;
for (int i=;i<=n;++i){
string str;
cin>>str;
name[str]=i;
c[name[str]][]=;
tot++;
}
scanf("%d",&m);
for (int i=;i<=m;++i){
string stra,strb;
cin>>stra>>strb;
name[stra]=tot++;
if (!name[strb]) name[strb]=tot++;
c[][name[stra]]=;
c[name[stra]][name[strb]]=;
}
scanf("%d",&k);
for (int i=;i<k;++i){
string a,b;
cin>>a>>b;
if (!name[a]) name[a]=tot++;
if (!name[b]) name[b]=tot++;
c[name[a]][name[b]]=inf;
}
printf("%d\n",m-dinic());
}
return ;
}

 

POJ A Plug for UNIX (最大流 建图)的更多相关文章

  1. poj 3281 最大流+建图

    很巧妙的思想 转自:http://www.cnblogs.com/kuangbin/archive/2012/08/21/2649850.html 本题能够想到用最大流做,那真的是太绝了.建模的方法很 ...

  2. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  3. poj3680 Intervals 区间k覆盖问题 最小费用最大流 建图巧妙

    /** 题目:poj3680 Intervals 区间k覆盖问题 最小费用最大流 建图巧妙 链接:http://poj.org/problem?id=3680 题意:给定n个区间,每个区间(ai,bi ...

  4. hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙

    /** 题目:hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4106 ...

  5. 图论--网络流--最小割 HDU 2485 Destroying the bus stations(最短路+限流建图)

    Problem Description Gabiluso is one of the greatest spies in his country. Now he's trying to complet ...

  6. 【poj1087/uva753】A Plug for UNIX(最大流)

    A Plug for UNIX   Description You are in charge of setting up the press room for the inaugural meeti ...

  7. TZOJ 1911 A Plug for UNIX(最大流)

    描述 You are in charge of setting up the press room for the inaugural meeting of the United Nations In ...

  8. POJ1087:A Plug for UNIX(最大流)

    A Plug for UNIX 题目链接:https://vjudge.net/problem/POJ-1087 Description: You are in charge of setting u ...

  9. POJ1087 A Plug for UNIX —— 最大流

    题目链接:https://vjudge.net/problem/POJ-1087 A Plug for UNIX Time Limit: 1000MS   Memory Limit: 65536K T ...

随机推荐

  1. React学习笔记-生命周期函数

    定义: 生命周期函数指在某一个时刻组件会自动调用执行的函数

  2. 【前端技术】一篇文章搞掂:微信小程序

    实战: 1.[openId]获取openId 有如下几种方法: 通过wx.login()获取临时登录凭证 code,然后通过code2session获取openId wx.login():https: ...

  3. windows10 cortana 不能搜索解决办法

    不太确定是某次系统更新或安装VS软件之后, 发现windows10 cortana 搜索的结果是空白了, 搜索了相关帖子, 试遍所有方法都无效, 最后在联网的情况下, 只用了在powershell中重 ...

  4. HttpCanary——最强Android抓包工具!

    迎使用HttpCanary——最强Android抓包工具! HttpCanary是一款功能强大的HTTP/HTTPS/HTTP2网络包抓取和分析工具,你可以把他看成是移动端的Fiddler或者Char ...

  5. git用法小结

      共享仓库     bare 裸仓库   生成裸仓库时必须以.git结尾.   仓库就相当于一个服务器     ### 创建远程仓库  1. 创建以.git结尾的目录mkdir repo.git 2 ...

  6. Jmeter登录中的cookie问题

    Jmeter中发送多个http请求,由于后面的请求需要登录后才能获取到数据,所以前面先要发送登录请求. 登录时会写cookie到本地,后面的请求中会读取cookie中的JSESSIONID,若后面的请 ...

  7. do_mmap解读

    1: unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 2: unsigned long len, unsigned ...

  8. Percona XtraDB Cluster集群5.7 开启SSL认证

    mysqldump -uroot -p --ssl-cert=/data/mysql/client-cert.pem --ssl-key=/data/mysql/client-key.pem -h 1 ...

  9. 转 LoadRunner错误处理函数

    在脚本的Run-time Settings中,可以设置在脚本运行过程中发生错误的处理方式.进入到Run-time Settings中,切换到Miscellaneous标签页,可以看到Error Han ...

  10. Volatile 只保证可见性,并不保证原子性

    [尊重原创,转载请注明出处]http://blog.csdn.net/guyuealian/article/details/52525724   在说明Java多线程内存可见性之前,先来简单了解一下J ...