题目链接:POJ 1789

Description

Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for vegetable delivery, other for furniture, or for bricks. The company has its own code describing each type of a truck. The code is simply a string of exactly seven lowercase letters (each letter on each position has a very special meaning but that is unimportant for this task). At the beginning of company's history, just a single truck type was used but later other types were derived from it, then from the new types another types were derived, and so on.

Today, ACM is rich enough to pay historians to study its history. One thing historians tried to find out is so called derivation plan -- i.e. how the truck types were derived. They defined the distance of truck types as the number of positions with different letters in truck type codes. They also assumed that each truck type was derived from exactly one other truck type (except for the first truck type which was not derived from any other type). The quality of a derivation plan was then defined as

\(1/Σ_{(t_o,t_d)}d(t_o,t_d)\)

where the sum goes over all pairs of types in the derivation plan such that \(t_o\) is the original type and \(t_d\) the type derived from it and d(\(t_o\),\(t_d\)) is the distance of the types.

Since historians failed, you are to write a program to help them. Given the codes of truck types, your program should find the highest possible quality of a derivation plan.

Input

The input consists of several test cases. Each test case begins with a line containing the number of truck types, N, 2 <= N <= 2 000. Each of the following N lines of input contains one truck type code (a string of seven lowercase letters). You may assume that the codes uniquely describe the trucks, i.e., no two of these N lines are the same. The input is terminated with zero at the place of number of truck types.

Output

For each test case, your program should output the text "The highest possible quality is 1/Q.", where 1/Q is the quality of the best derivation plan.

Sample Input

4
aaaaaaa
baaaaaa
abaaaaa
aabaaaa
0

Sample Output

The highest possible quality is 1/3.

Source

CTU Open 2003

Solution

题意

用一个 \(7\) 位的字符串代表一个编号,两个编号之间的距离等于这两个编号之间不同字母的个数。

给定 \(n\) 个编号,求连接所有编号的最短距离。

思路

Kruskal

把每个字符串看成结点,用无向边连接任意两个结点,边权为两个字符串之间的距离,对构成的无向图求最小生成树就是答案。

Code

#include <iostream>
#include <cstdio>
#include <queue>
#include <map>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 2010, M = 4e6 + 10;
const int inf = 0x3f3f3f3f;
int n, m;
int ans; struct Edge {
int x, y, z;
} edge[M]; int fa[N]; int cmp(Edge a, Edge b) {
return a.z < b.z;
} int get(int x) {
if(x == fa[x]) return x;
return fa[x] = get(fa[x]);
} void init() {
for(int i = 0; i <= n; ++i) {
fa[i] = i;
}
ans = 0;
} void kruskal() {
sort(edge + 1, edge + 1 + m, cmp);
for(int i = 1; i <= m; ++i) {
int x = get(edge[i].x);
int y = get(edge[i].y);
if(x != y) {
ans += edge[i].z;
fa[x] = y;
}
}
} char str[N][10]; int dis(int x, int y) {
int res = 0;
for(int i = 0; i < 7; ++i) {
if(str[x][i] != str[y][i]) {
++res;
}
}
return res;
} int main() {
while(scanf("%d", &n) && n) {
for(int i = 1; i <= n; ++i) {
scanf("%s", str[i]);
}
init();
m = 0;
for(int i = 1; i <= n; ++i) {
for(int j = i + 1; j <= n; ++j) {
edge[++m].x = i;
edge[m].y = j;
edge[m].z = dis(i, j);
}
}
kruskal();
printf("The highest possible quality is 1/%d.\n", ans);
}
return 0;
}

POJ 1789 Truck History (Kruskal)的更多相关文章

  1. POJ 1789 Truck History (Kruskal 最小生成树)

    题目链接:http://poj.org/problem?id=1789 Advanced Cargo Movement, Ltd. uses trucks of different types. So ...

  2. POJ 1789 Truck History (Kruskal最小生成树) 模板题

    Description Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for v ...

  3. Kuskal/Prim POJ 1789 Truck History

    题目传送门 题意:给出n个长度为7的字符串,一个字符串到另一个的距离为不同的字符数,问所有连通的最小代价是多少 分析:Kuskal/Prim: 先用并查集做,简单好写,然而效率并不高,稠密图应该用Pr ...

  4. POJ 1789 -- Truck History(Prim)

     POJ 1789 -- Truck History Prim求分母的最小.即求最小生成树 #include<iostream> #include<cstring> #incl ...

  5. poj 1789 Truck History

    题目连接 http://poj.org/problem?id=1789 Truck History Description Advanced Cargo Movement, Ltd. uses tru ...

  6. POJ 1789 Truck History【最小生成树简单应用】

    链接: http://poj.org/problem?id=1789 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  7. POJ 1789 Truck History (最小生成树)

    Truck History 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/E Description Advanced Carg ...

  8. poj 1789 Truck History 最小生成树

    点击打开链接 Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15235   Accepted:  ...

  9. poj 1789 Truck History【最小生成树prime】

    Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 21518   Accepted: 8367 De ...

随机推荐

  1. Mac定时执行脚本_服务launchctl

    Mac 设置自动执行定时任务, 步骤: 1. 编写plist 2.将plist放入该目录下 ~/Library/LaunchAgents 3.命令启动 添加: launchctl load /Syst ...

  2. 【一起学源码-微服务】Nexflix Eureka 源码三:EurekaServer启动之EurekaServer上下文EurekaClient创建

    前言 上篇文章已经介绍了 Eureka Server 环境和上下文初始化的一些代码,其中重点讲解了environment初始化使用的单例模式,以及EurekaServerConfigure基于接口对外 ...

  3. C++中一个类(非继承类)对象,所占内存空间大小

    离职后在家里带了半年多了,这半年多里没有编写过一行代码,倒是看过一些书,但是差不多也都是囫圃吞枣.房子也快要装修,也得赶快找一个工作了,不然养车,还要玩摄影,没收入的日子真是不好过啊.呵呵. 按惯例, ...

  4. Cocos2d 之FlyBird开发---GameAbout类

    |   版权声明:本文为博主原创文章,未经博主允许不得转载.(笔者才疏学浅,如有错误,请多多指教) 一般像游戏关于的这种界面中,主要显示的是游戏的玩法等. GameAbout.h #ifndef _G ...

  5. SQL分支语句与循环语句

    分支语句 if then elsif then else end if 举例: set serveroutput on declare num number; begin num:; then dbm ...

  6. 组件化框架设计之apt编译时期自动生成代码&动态类加载(二)

    阿里P7移动互联网架构师进阶视频(每日更新中)免费学习请点击:https://space.bilibili.com/474380680 本篇文章将继续从以下两个内容来介绍组件化框架设计: apt编译时 ...

  7. Java小游戏

    这是一个飞机躲避子弹的小游戏,其中有许多干货 这是蒟蒻我第二次做,请各位大佬多多指教 目录 1.游戏主窗口的创建 2.图形绘制_文本绘制_颜色改变_图像对象的加载 3.线程内部类实现动画 4.游戏物体 ...

  8. asp.net core 使用中间件拦截请求和返回数据,并对数据进行加密解密。

    原文:asp.net core 使用中间件拦截请求和返回数据,并对数据进行加密解密. GitHub demo https://github.com/zhanglilong23/Asp.NetCore. ...

  9. LeetCode Array Easy 414. Third Maximum Number

    Description Given a non-empty array of integers, return the third maximum number in this array. If i ...

  10. emqtt 分布集群及节点桥接搭建

    目录 分布集群 emq@s1.emqtt.io 节点设置 emq@s2.emqtt.io 节点设置 节点加入集群 节点退出集群 节点发现与自动集群 manual 手动创建集群 基于 static 节点 ...