51nod 1963 树上Nim
这题还真就是树上玩 Nim...
相关知识点就是阶梯博弈,具体可以康这里 →_→ PS:手动搜索阶梯博弈
然后这题就转化为了多路径的阶梯博弈,这样的话咱定义根节点深度为 0,然后把所有奇数深度点的权值异或一下康康是不是 0 就好了
但这里要注意别加边 dfs ,直接利用题目性质(fa[i]<i) O(n) 读入的同时得到深度就好了,咱就是加边dfs T 了一发....
//by Judge
#include<cstdio>
#include<cstring>
#include<iostream>
#define Rg register
#define fp(i,a,b) for(Rg int i=(a),I=(b)+1;i<I;++i)
#define go(u) for(Rg int i=head[u],v=e[i].to;i;v=e[i=e[i].nxt].to)
#define ll long long
using namespace std;
const int M=3e5+3;
typedef int arr[M];
#ifndef Judge
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
#endif
char buf[1<<21],*p1=buf,*p2=buf;
inline int read(){ int x=0,f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0'; return x*f;
} int n,ans; arr d;
int main(){
int T=read();
while(T--){ n=read(),ans=0; Rg int x;
fp(i,1,n-1) x=read(),d[i]=d[x]^1;
fp(i,0,n-1){ x=read();
if(d[i]&1) ans^=x;
} puts(ans?"win":"lose");
} return 0;
}
51nod 1963 树上Nim的更多相关文章
- 51nod 1766 树上的最远点对 | LCA ST表 线段树 树的直径
51nod 1766 树上的最远点对 | LCA ST表 线段树 树的直径 题面 n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个区间内各选一点之间的最大距离,即 ...
- Atcoder #017 agc017 D.Game on Tree 树上NIM 博弈
LINK 题意:树上NIM的模板题,给出一颗树,现有操作删去端点不为根节点的边,其另一端节点都将被移除,不能取者为败 思路:一看就是个NIM博弈题,只是搬到树上进行,树上DFS进行异或 记得#014D ...
- [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树)
[51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树) 题面 给出一棵N个点的树,Q次询问一点编号在区间[l1,r1]内,另一点编号在区间[l2,r2]内的所有点对距离最大值.\ ...
- 51Nod 1766 树上的最远点对
Description 一棵树,询问两个端点编号分别在在 \([a,b]\) 和 \([c,d]\) 两个区间中的最长链. Sol 线段树+ST表. 树上最长链可以合并,只需要合并两个区间最长链的两个 ...
- 51Nod 1069:Nim游戏(尼姆博弈)
1069 Nim游戏 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走, ...
- CodeForces 812E Sagheer and Apple Tree 树上nim
Sagheer and Apple Tree 题解: 先分析一下, 如果只看叶子层的话. 那么就相当于 经典的石子问题 nim 博弈了. 那我们看非叶子层. 看叶子层的父亲层. 我们可以发现, 如果从 ...
- 51Nod.1766.树上最远点对(树的直径 RMQ 线段树/ST表)
题目链接 \(Description\) 给定一棵树.每次询问给定\(a\sim b,c\sim d\)两个下标区间,从这两个区间中各取一个点,使得这两个点距离最远.输出最远距离. \(n,q\leq ...
- 51nod 1766 树上的最远点对(线段树)
像树的直径一样,两个集合的最长路也是由两个集合内部的最长路的两个端点组成的,于是我们知道了两个集合的最长路,枚举一下两两端点算出答案就可以合并了,所以就可以用线段树维护一个区间里的最长路了. #inc ...
- 51nod 1766 树上的最远点对——线段树
n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个区间内各选一点之间的最大距离,即你需要求出max{dis(i,j) |a<=i<=b,c<=j& ...
随机推荐
- AOP aspect XML 配置
/** * 00配置接入点:定义一个切入点 * execution(* com.foen.foensys.controller..*.*(..))") "*" 第一个* ...
- sh_09_打印多条分隔线
sh_09_打印多条分隔线 def print_line(char, times): """打印单行分隔线 :param char: 分隔字符 :param times: ...
- YOLO_V2
YOLOv2:代表着目前业界最先进物体检测的水平,它的速度要快过其他检测系统(FasterR-CNN,ResNet,SSD),使用者可以在它的速度与精确度之间进行权衡. YOLO9000:这一网络结构 ...
- Python语言中enumerate()及zip()函数的使用例子
在Python编程语言中,enumerate()及zip()是两个常用的内置函数,这两个函数功能类似,但又有所区别,下面通过两个例子分别进行说明. enumerate()函数 该函数在字面上是枚举.列 ...
- QtCreator常用之快捷键
1. Ctrl(按住)+ Tab快速切换已打开的文件 2. 自动添加成员函数实体(.cpp)定义: 将光标移动到h文件中的方法声明. 按Alt(按住)+ Enter,再按回车键 将在cpp中添加该函数 ...
- Shell 变量/echo命令
Shell 教程 Shell 是一个用C语言编写的程序,它是用户使用Linux的桥梁.Shell既是一种命令语言,又是一种程序设计语言. Shell 是指一种应用程序,这个应用程序提供了一个界面,用户 ...
- python-opencv中的cv2.inRange函数
本次目标是将一副图像从rgb颜色空间转换到hsv颜色空间,颜色去除白色背景部分 具体就调用了cv2的两个函数,一个是rgb转hsv的函数 具体用法 hsv = cv2.cvtColor(rgb_ima ...
- 大数据笔记(二十七)——Spark Core简介及安装配置
1.Spark Core: 类似MapReduce 核心:RDD 2.Spark SQL: 类似Hive,支持SQL 3.Spark Streaming:类似Storm =============== ...
- AVLTree的实现以及左右旋转维持自平衡
AVL(Adelson-Velskii and Landis)树是带有平衡条件的二叉查找树.这个平衡条件必须要容易保持,而且它保证树的深度须是o(logN).最简单的想法是要求左右子树具有相同的高度, ...
- 为什么我上传了flv或MP4文件到服务器,可输入正确地址通过http协议来访问总是出现“无法找到该页”的404错误呢
常用MIME类型(Flv,Mp4的mime类型设置) 也许你会在纳闷,为什么我上传了flv或MP4文件到服务器,可输入正确地址通过http协议来访问总是出现“无法找到该页”的404错误呢?这就表明mp ...