P2516 [HAOI2010]最长公共子序列
看到数据范围,显然 $n^2$ 的 $dp$...
设 $f[i][j]$ 表示 $A$ 串考虑了前 $i$ 位,$B$ 串考虑了前 $j$ 位,最优情况下的方案数
但是好像没法判断转移来的是否为最优方案?
所以再设 $g[i][j]$ 表示 $A$ 串考虑了前 $i$ 位,$B$ 串考虑了前 $j$ 位,最优情况下的匹配数
那么对于 $g$ 有转移,$g[i][j]=max(g[i-1][j],g[i][j-1])$,如果 $A[i]==B[j]$,那么 $g[i][j]=max(g[i][j],g[i-1][j-1]+1)$
然后考虑 $f$ 的转移
如果 $g[i-1][j]==g[i][j]$ 则 $f[i][j]+=f[i-1][j]$,如果 $g[i][j-1]==g[i][j]$ 则 $f[i][j]+=f[i][j-1]$,如果 $A[i]==B[j]$ 并且 $g[i][j]==g[i-1][j-1]$ 那么 $f[i][j]+=g[i-1][j-1]$
发现输出比答案大...
仔细分析发现如果 $g[i-1][j-1]==g[i][j]$,那么 $f[i-1][j-1]$ 的贡献会分别通过 $f[i][j-1],f[i-1][j]$ 转移到 $f[i][j]$ ,就被算了两次
所以如果 $g[i-1][j-1]==g[i][j]$ ,$f[i][j]$ 还要再减去 $f[i-1][j-1]$
最后,一定要滚动数组
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=,mo=1e8;
inline int fk(int x) { return x>=mo ? x-mo : x; }
int n,m,f[][N],g[][N];
char a[N],b[N];
int main()
{
scanf("%s",a+); scanf("%s",b+);
n=strlen(a+)-,m=strlen(b+)-;
for(int i=;i<=m;i++) f[][i]=;
int cur=,pre;
for(int i=;i<=n;i++)
{
pre=cur; cur^=; f[cur][]=;
for(int j=;j<=m;j++) g[cur][j]=f[cur][j]=;
for(int j=;j<=m;j++)
{
if(a[i]==b[j]) g[cur][j]=g[pre][j-]+,f[cur][j]=f[pre][j-]; if(g[pre][j]>g[cur][j]) g[cur][j]=g[pre][j],f[cur][j]=f[pre][j];
else if(g[pre][j]==g[cur][j]) f[cur][j]=fk(f[cur][j]+f[pre][j]); if(g[cur][j-]>g[cur][j]) g[cur][j]=g[cur][j-],f[cur][j]=f[cur][j-];
else if(g[cur][j-]==g[cur][j]) f[cur][j]=fk(f[cur][j]+f[cur][j-]); if(g[cur][j]==g[pre][j-]) f[cur][j]=fk(f[cur][j]-f[pre][j-]+mo);
}
}
printf("%d\n%d\n",g[cur][m],f[cur][m]);
return ;
}
P2516 [HAOI2010]最长公共子序列的更多相关文章
- 2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组)
2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组) https://www.luogu.com.cn/problem/P2516 题意: 给定字符串 \(S\) ...
- 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)
洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...
- 洛谷 P2516 [HAOI2010]最长公共子序列
题目传送门 解题思路: 第一问要求最长公共子序列,直接套模板就好了. 第二问要求数量,ans[i][j]表示第一个字符串前i个字符,第二个字符串前j个字符的最长公共子序列的数量 如果f[i][j]是由 ...
- P2516 [HAOI2010]最长公共子序列 题解(LCS)
题目链接 最长公共子序列 解题思路 第一思路: 1.用\(length[i][j]\)表示\(a\)串的前\(i\)个字符与\(b\)串的前\(j\)个字符重叠的最长子串长度 2.用\(num[i][ ...
- luogu P2516 [HAOI2010]最长公共子序列
传送门 首先那个\(O(n^2)\)的dp都会吧,不会自己找博客或者问别人,或是去做模板题(误) 对以下内容不理解的,强势推荐flash的博客 我们除了原来记录最长上升子序列的\(f_{i,j}\), ...
- 洛谷P2516 [HAOI2010]最长公共子序列
题目描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X="x0,x1,-,xm-1",序列Y=& ...
- Luogu P2516 [HAOI2010]最长公共子序列 DP
首先$LIS$显然:$f[i][j]=max(f[i][j-1],f[i-1][j],(a[i]==b[j])*f[i-1][j-1])$ 考虑如何转移数量: 首先,不管$a[i]$是否等于$b[j] ...
- [BZOJ2423][HAOI2010]最长公共子序列
[BZOJ2423][HAOI2010]最长公共子序列 试题描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x ...
- 【BZOJ2423】[HAOI2010]最长公共子序列 DP
[BZOJ2423][HAOI2010]最长公共子序列 Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...
随机推荐
- mysql 普通用户与权限
1.创建用户 mysql> create user 'myself'@'%' identified by 'Myself'; Query OK, 0 rows affected mysql> ...
- Mysql包的下载
官方下载地址: https://dev.mysql.com/downloads/mysql/5.5.html#downloads mysql的下载界面 二进制的包 通用的RPM包 源码包
- Python爬虫十六式 - 第四式: 使用Xpath提取网页内容
Xpath:简单易用的网页内容提取工具 学习一时爽,一直学习一直爽 ! Hello,大家好,我是Connor,一个从无到有的技术小白.上一次我们说到了 requests 的使用方法.到上节课为止, ...
- HDU 6578 Blank
hdu题面 Time limit 1000 ms Memory limit 262144 kB OS Windows Source 2019 Multi-University Training Con ...
- 满减 HRBUST - 2455
https://vjudge.net/problem/HRBUST-2455 有两种优惠方式,一是满400减100,另外一种是商品自带折扣,二者不可叠加 dp[i][j]表示前i种商品,(参与满400 ...
- python3.7--pycharm selenium自启360浏览器/360极速浏览器方法
写于:2019.01.02(实测日) 参考文档:https://blog.csdn.net/five3/article/details/50013159 一.下载360浏览器或360极速浏览器的Chr ...
- Laravel提交POST请求报错
提交POST请求出现如下错误: The page has expired due to inactivity Please refresh and try again 这是由于在Laravel框架中有 ...
- $_SERVER 中HTTP_HOST 和 SERVER_NAME
本来打算获取当前页面的url的 拼接时发现 $_SERVER['SERVER_NAME'] 并不是当前的url链接 打印整个$_SERVER 发现 [SERVER_NAME] => lvs ...
- tensorflow基本操作(1)
import tensorflow as tf import numpy as np 点乘,支持broadcasting 乘号* 和 multiply等价 mul已经废弃不用了 matmul 是矩阵相 ...
- leetcode 12题 数字转罗马数字
leetcode 12题 数字转罗马数字 答案一:我的代码 代码本地运行完全正确,在线运行出错 class Solution { public: string intToRoman(int num) ...