Blocks题解

区间dp

阅读体验。。。https://zybuluo.com/Junlier/note/1289712

很好的一道区间dp的题目(别问我怎么想到的)

dp状态

其实这个题最难的地方是这道题目的状态怎么设

  • 首先既然是区间dp,那肯定最先想到的状态是

\(dp[i][j]\)表示消掉区间\([i,j]\)上所有的块的最大分数

  • 突然发现这个状态会受区间外和\(i\)或\(j\)颜色相同的块的影响

    并且转移也并不好转移=_=

  • 所以我们考虑换一种状态。。。

    既然说会受到外面的块的影响?那考虑一种方法来解决

\(dp[i][j][k]\)表示消掉区间\([i,j]\)并且区间\([i,j]\)右边还有k个和j颜色相同的块(除此之外,这个序列没有别的块了),消掉这些所有的块的最大分数

有点抽象,再来感性理解一下:

当前处理的子问题\(dp[i][j][k]\)主体由区间\([i,j]\)组成,然后与\(j\)相同有\(k\)块接在后面,这\(k\)块之间的其他块已经全部消完了

  • 如果实在还不明白,先看转移吧。。。

    然后可以根据我们前面的错误状态自己思考为什么加上这一维

转移

\(dp[i][j][k]\):显然有两种转移

我这里是用记忆化搜索实现的

  1. 消掉j和后面的k块
```
dp[i][j][k]=max(dp[i][j][k],Dfs(i,j-1,0)+(k+1)*(k+1));
```
  1. 对于区间\([i,j]\),中间可能有和\(j\)颜色相同的块,假设位置为\(p\),我们可以选择消掉区间\([p+1,j-1]\)中所有的块使颜色拼起来,当然这是个子问题,所以前面讲了用记忆化搜索实现

    PS: 下面代码的\(nxt[p]\)是预处理的在\(p\)前面第一个和\(p\)颜色相同的块的位置
```
for(int p=nxt[j];p>=i;p=nxt[p])//枚举p
dp[i][j][k]=max(dp[i][j][k],Dfs(i,p,k+1)+Dfs(p+1,j-1,0));
```

汇总

讲完这些整个程序的实现就不难了

那我直接放上代码,不好意思,没有注释

#include<bits/stdc++.h>
#define lst long long
#define ldb double
#define N 250
using namespace std;
const int Inf=1e9;
int read()
{
int s=0,m=0;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')m=1;ch=getchar();}
while(ch>='0'&&ch<='9')s=(s<<3)+(s<<1)+(ch^48),ch=getchar();
return m?-s:s;
} int n;
int col[N],nxt[N],hd[N];
lst dp[N][N][N];//消掉[i,j]区间和[i,j]右边和j颜色一样的连续k个方块的最大分数 lst Dfs(int i,int j,int k)
{
if(i>j)return 0;
if(dp[i][j][k])return dp[i][j][k];
dp[i][j][k]=max(dp[i][j][k],Dfs(i,j-1,0)+(k+1)*(k+1));
for(int p=nxt[j];p>=i;p=nxt[p])
dp[i][j][k]=max(dp[i][j][k],Dfs(i,p,k+1)+Dfs(p+1,j-1,0));
return dp[i][j][k];
} int main()
{
int T=read();
for(int tt=1;tt<=T;++tt)
{
n=read();
memset(hd,0,sizeof(hd));
memset(dp,0,sizeof(dp));
memset(nxt,0,sizeof(nxt));
for(int i=1;i<=n;++i)
{
col[i]=read();
nxt[i]=hd[col[i]];
hd[col[i]]=i;
}
printf("Case %d: %lld\n",tt,Dfs(1,n,0));
}
return 0;
}

Blocks题解(区间dp)的更多相关文章

  1. UVA10559 方块消除 Blocks(区间dp)

    一道区间dp好题,在GZY的ppt里,同时在洛谷题解里看见了Itst orz. 题目大意 有n个带有颜色的方块,没消除一段长度为 \(x\) 的连续的相同颜色的方块可以得到 \(x^2\) 的分数,用 ...

  2. luogu1005矩阵取数游戏题解--区间DP

    题目链接 https://www.luogu.org/problemnew/show/P1005 分析 忽然发现这篇题解好像并没有什么意义...因为跟奶牛零食那道题一模一样,博主比较懒如果您想看题解的 ...

  3. 【Uva10559】Blocks(区间DP)

    Description 题意:有一排数量为N的方块,每次可以把连续的相同颜色的区间消除,得到分数为区间长度的平方,然后左右两边连在一起,问最大分数为多少. \(1\leq N\leq200\) Sol ...

  4. luogu2858奶牛零食题解--区间DP

    题目链接 https://www.luogu.org/problemnew/show/P2858 一句话题意: https://cn.vjudge.net/problem/POJ-3186#autho ...

  5. luogu4302字符串折叠题解--区间DP

    题目链接 https://www.luogu.org/problemnew/show/P4302 分析 很明显一道区间DP题,对于区间\([l,r]\)的字符串,如果它的字串是最优折叠的,那么它的最优 ...

  6. 洛谷P1220 关路灯 题解 区间DP

    题目链接:https://www.luogu.com.cn/problem/P1220 本题涉及算法:区间DP. 我们一开始要做一些初始化操作,令: \(p[i]\) 表示第i个路灯的位置: \(w[ ...

  7. Blocks poj 区间dp

    Some of you may have played a game called 'Blocks'. There are n blocks in a row, each box has a colo ...

  8. 2017 ACM-ICPC亚洲区域赛北京站J题 Pangu and Stones 题解 区间DP

    题目链接:http://www.hihocoder.com/problemset/problem/1636 题目描述 在中国古代神话中,盘古是时间第一个人并且开天辟地,它从混沌中醒来并把混沌分为天地. ...

  9. luogu4677山区建小学题解--区间DP

    题目链接 https://www.luogu.org/problemnew/show/P4677 分析 这道题方法跟之前题不一样,我们相当于枚举一个左右端点来线性扩展,同时划分断点进行决策 \(f[i ...

随机推荐

  1. 阿里开源框架-JarsLink-【JAVA的模块化开发框架】

    JarsLink (原名Titan) 是一个基于JAVA的模块化开发框架,它提供在运行时动态加载模块(一个JAR包).卸载模块和模块间调用的API. 需求背景 应用拆分的多或少都有问题.多则维护成本高 ...

  2. vue路由的两种模式配置以及history模式下面后端如何配置

    vue路由的两种模式配置以及history模式下面后端如何配置 1.hash ——即地址栏URL中的#符号.hash 虽然出现URL中,但不会被包含在HTTP请求中,对后端完全没有影响,因此改变has ...

  3. ubuntu18.04 设置环境变量

    1.第一步:命令行输入 sudo gedit /etc/profile 2.第二步:将你想要设置环境变量的内容追加到文件结尾 例如:export JAVA_HOME=/usr/java/latest ...

  4. CA认证机制的简明解释

    公钥机制面临的问题: 假冒身份发布公钥! 可以用CA来认证公钥的身份.CA有点像公安局,公钥就像身份证.公安局可以向任何合法用户颁发身份证以证明其合法身份.第三方只要识别身份证的真伪就能判断身份证持有 ...

  5. ThreadPoolExecutor线程池原理

    参考: https://www.cnblogs.com/liuzhihu/p/8177371.html

  6. django 使用ORM插入数据,提示Cannot assign "1": "B" must be a "Projectconfig" instance.

    这是因为使用了外键导致的, 如果使用了外键,先实例化外键查询,然后再插入的表里面放入实例化后的外键连接

  7. Change the environment variable for python code running

    python程序运行中改变环境变量: Trying to change the way the loader works for a running Python is very tricky; pr ...

  8. HTTP通信安全和Web攻击技术

    一.HTTPS,确保Web安全 在HTTP协议中可能存在信息窃听或身份伪装等安全问题,HTTP的不足: 通信使用明文(不加密),内容可能会被窃听  不验证通信方的身份,因此有可能遭遇伪装 无法证明报文 ...

  9. Reporting Services 配置工具

    使用 Reporting Services 配置管理器可配置 Reporting Services 安装.如果使用“仅文件”选项安装报表服务器,则必须使用此工具来配置服务器,才能使用该服务器.如果使用 ...

  10. DataTable 转Json格式C#代码

    /// <summary> /// dataTable转换成Json格式 /// </summary> /// <param name="dt"> ...