BZOJ1135 LYZ(POI2009) Hall定理+线段树

做这个题之前首先要了解判定二分图有没有完备匹配的Hall定理:

那么根据Hell定理,如果任何一个X子集都能连大于等于|S|的Y子集就可以获得完备匹配,那么就是:

题目变成只要不满足上面这个条件就能得到完备匹配,注意到右边的这个dk是一个常数,那么我们就可以只考虑左边最大的是否满足就行了。
那么我们就可以在修改过程中一边在线段树上修改一边查询区间最大值作比较就可以了。
#include <bits/stdc++.h>
using namespace std;
const int N=;
typedef long long ll;
int n,m;
ll k,d,sum[N],lftsum[N],rhtsum[N],mxsum[N]; void buildtree(int no,int l,int r) {
lftsum[no]=rhtsum[no]=mxsum[no]=;
if (l==r) {sum[no]=-k;return;}
int mid=(l+r)>>;
buildtree(no<<,l,mid);
buildtree(no<<|,mid+,r);
sum[no]=sum[no<<]+sum[no<<|];
} void pushup(int no) {
sum[no]=sum[no<<]+sum[no<<|];
mxsum[no]=max(max(mxsum[no<<],mxsum[no<<|]),rhtsum[no<<]+lftsum[no<<|]);
lftsum[no]=max(lftsum[no<<],lftsum[no<<|]+sum[no<<]);
rhtsum[no]=max(rhtsum[no<<|],rhtsum[no<<]+sum[no<<|]);
} void modify(int no,int l,int r,int pos,ll x) {
if (l==r) {
sum[no]+=x;
lftsum[no]=rhtsum[no]=mxsum[no]=max(sum[no],(ll));
return;
}
int mid=(l+r)>>;
if (pos<=mid) modify(no<<,l,mid,pos,x);
else modify(no<<|,mid+,r,pos,x);
pushup(no);
} int main()
{
scanf("%d%d%lld%lld",&n,&m,&k,&d);
buildtree(,,n-d);
for(int i=;i<=m;i++) {
int r;
ll x;
scanf("%d%lld",&r,&x);
modify(,,n-d,r,x);
if (mxsum[]>d*k) printf("NIE\n");
else printf("TAK\n");
}
return ;
}
BZOJ1135 LYZ(POI2009) Hall定理+线段树的更多相关文章
- BZOJ.3693.圆桌会议(Hall定理 线段树)
题目链接 先考虑链.题目相当于求是否存在完备匹配.那么由Hall定理,对于任意一个区间[L,R],都要满足[li,ri]完全在[L,R]中的ai之和sum小于等于总位置数,即R-L+1.(其实用不到H ...
- LOJ.6062.[2017山东一轮集训]Pair(Hall定理 线段树)
题目链接 首先Bi之间的大小关系没用,先对它排序,假设从小到大排 那么每个Ai所能匹配的Bi就是一个B[]的后缀 把一个B[]后缀的匹配看做一条边的覆盖,设Xi为Bi被覆盖的次数 容易想到 对于每个i ...
- loj#6062. 「2017 山东一轮集训 Day2」Pair hall定理+线段树
题意:给出一个长度为 n的数列 a和一个长度为 m 的数列 b,求 a有多少个长度为 m的连续子数列能与 b匹配.两个数列可以匹配,当且仅当存在一种方案,使两个数列中的数可以两两配对,两个数可以配对当 ...
- BZOJ3693: 圆桌会议(Hall定理 线段树)
题意 题目链接 Sol 好的又是神仙题... 我的思路:对于区间分两种情况讨论,一种是完全包含,另一种是部分包含.第一种情况非常好判断,至于计算对于一个区间[l, r]的$\sum a[i]$就可以了 ...
- 模拟赛 怨灵退治 题解(Hall定理+线段树)
题意: 有 n 群怨灵排成一排,燐每秒钟会选择一段区间,消灭至多 k 只怨灵. 如果怨灵数量不足 k,则会消灭尽量多的怨灵. 燐作为一只有特点的猫,它选择的区间是不会相互包含的.它想要知道它每秒最多能 ...
- Codeforces 338E - Optimize!(Hall 定理+线段树)
题面传送门 首先 \(b_i\) 的顺序肯定不会影响匹配,故我们可以直接将 \(b\) 数组从小到大排个序. 我们考虑分析一下什么样的长度为 \(m\) 的数组 \(a_1,a_2,\dots,a_m ...
- 【BZOJ2138】stone Hall定理+线段树
[BZOJ2138]stone Description 话说Nan在海边等人,预计还要等上M分钟.为了打发时间,他玩起了石子.Nan搬来了N堆石子,编号为1到N,每堆包含Ai颗石子.每1分钟,Nan会 ...
- ARC076 F Exhausted? Hall定理 + 线段树扫描线
---题面--- 题目大意: 有n个人,m个座位,每个人可以匹配的座位是[1, li] || [ri, m],可能有人不需要匹配座位(默认满足),问最少有多少人不能被满足. 题解: 首先可以看出这是一 ...
- 【题解】 AtCoder ARC 076 F - Exhausted? (霍尔定理+线段树)
题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: ...
随机推荐
- Mac sublime安装package controller
https://packagecontrol.io/installation#st2 链接被墙了这个. 我拿来放在这里. The simplest method of installation is ...
- 个性化对待亚马逊不同站点 使用 Python 进行线程编程
# -*- coding: UTF-8 -*- import threading import time exitFlag = 0 class myThread (threading.Thread): ...
- sh/bash/csh/Tcsh/ksh/pdksh等shell的区别
w shell confusion..what is diff between bash, ksh, csh, tcsh..?? http://www.linuxquestions.org/ques ...
- CSAR——Channel-wise and Spatial Feature Modulation Network for Single Image Super-Resolution
1. 摘要 CNN 中的特征包含着不同类型的信息,它们对图像重建的贡献也不一样.然而,现在的大多数 CNN 模型却缺少对不同信息的辨别能力,因此也就限制了模型的表示容量. 另一方面,随着网络的加深,来 ...
- 阶段1 语言基础+高级_1-3-Java语言高级_04-集合_08 Map集合_6_Map集合遍历键值对方式
增强for
- 测开之路一百零八:bootstrap表格
引入bootstrap和jquery 普通表格 html自带的边框线 bootstrap表格属性 bootstrap表格 边框线 鼠标经过变色 压缩表格,减小密度 自适应屏幕 隔行突出(变色) 表格里 ...
- 测开之路九十一:css常用的选择器
一:全局选择器:* 二:标签选择器,如给所有p标签加个背景色 三:id选择器:# ,如给id为id_01的元素加一个框 四:类选择器:. 如设置一个类选择器为blue,当有标签引用blue的时候,背景 ...
- java配置详解
JAVA_HOMED:\JavaTools\Java\jdk1.7.0_80\ D:\JavaEnvironment\Java\jdk1.7.0_71D:\JavaEnvironment\Java\j ...
- Linux的简介安装与简单使用
一: 适合初学者的最佳Linux发行版:Linux Mint 老旧硬件的最佳Linux发行版:Ubuntu MATE 安全行业的最佳Linux发行版:Kali Linux 专属游戏的Linux发行版: ...
- Java第三周总结&实验报告(1)
总结:不知不觉,到了第三周,回顾这一周,我更加深入了解了main方法,除此之外,学习了两个关键字,一个this,一个static,this在强调属性时,只能放在句首且不能循环调用,static声明用于 ...