CodeForces-520E Pluses everywhere
题目描述
给出一个长度为 \(n\) 的字符串,给出一个非负整数 \(k\),要求给这个字符串中间添加 \(k\) 个$$+$’号,变成一个表
达式,比如”\(1000101\)”,添加两个\(+\)号,可以变成”\(10+001+01\)”,或者”\(1000+1+01\)”,表达式的值分别是\(12\) 和 \(1002\)。
问所有的添加加号的方案的表达式的值的和是多少。
Input
两个整数 \(n,k\),一个字符串$ s$ \((0<=k<n<=1e5).\)
Output
一个整数,模$ 1000000007$
Sample Input
3 1
108
3 2
108
Sample Output
27
9
计数\(DP\)
首先,看到那么大的数据范围肯定是对于每个数计算贡献。
那么我们该如何计算贡献呢?
对于题目给出的那个字符串\(S\),从左往右每个数字依次为\(a_{n-1},a_{n-2}....a_{1},a_0\).
现在,我们对于\(a_t\),讨论其贡献。
\(a_t\)右边有\(t\)个位置可以放置加号,同时一共有\(n-1\)个位置放置加号。
若\(a_t\)右边第一个位置放置了加号,则\(a_t\)被当成个位,还有\(n-2\)个空位,\(k-1\)个加号,一共有\(C(k-1,n-2)\)种方案。
其贡献为\(C(k-1,n-1)*10^{0}*a_t\)。
若\(a_t\)右边第一个位置为空,第二个位置放置加号,则\(a_t\)为十位,还有\(n-3\)个空位,\(k-1\)个加号,共有\(C(k-1,n-3)\)种方案。
贡献为\(C(k-1,n-2)*10^{1}*a_t\).
依次类推,
若\(a_t\)右边为空,则贡献为\(C(k,n-t-2)*10^{t}*a_t\)。
所以,\(a_t\)这个数的贡献为\((10^{t}*C(k,n-t-2)+\sum^{t}_{j=0}10^{j}*C(k-1,n-j-2))*a_t\)。
于是我们可以得到第\(i\)个数的贡献计算公式\(A_i=10^{i}*C(k,n-i-2)+\sum^{i}_{j=0}10^{j}*C(k-1,n-j-2)\)。
最后,\(Ans=\sum^{n-1}_{i=0}A_i*a_i\)。
代码如下
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define int long long
#define reg register
#define Raed Read
#define clr(a,b) memset(a,b,sizeof a)
#define Mod(x) (x>=mod)&&(x-=mod)
#define debug(x) cerr<<#x<<" = "<<x<<endl;
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)>(b)?(b):(a))
#define rep(a,b,c) for(reg int a=(b),a##_end_=(c); a<=a##_end_; ++a)
#define ret(a,b,c) for(reg int a=(b),a##_end_=(c); a<a##_end_; ++a)
#define drep(a,b,c) for(reg int a=(b),a##_end_=(c); a>=a##_end_; --a)
#define erep(i,G,x) for(int i=(G).Head[x]; i; i=(G).Nxt[i])
#pragma GCC target("avx,avx2,sse4.2")
#pragma GCC optimize(3)
inline int Read(void) {
int res=0,f=1;
char c;
while(c=getchar(),c<48||c>57)if(c=='-')f=0;
do res=(res<<3)+(res<<1)+(c^48);
while(c=getchar(),c>=48&&c<=57);
return f?res:-res;
}
template<class T>inline bool Min(T &a, T const&b) {
return a>b?a=b,1:0;
}
template<class T>inline bool Max(T &a, T const&b) {
return a<b?a=b,1:0;
}
const int N=1e5+5,M=1e6+5,mod=1e9+7;
bool MOP1;
int Fac[N],Inv[N];
inline int Pow(int x) {
int res=1,y=mod-2;
while(y) {
if(y&1)res=(res*x)%mod;
x=(x*x)%mod,y>>=1;
}
return res;
}
inline int C(int x,int y) {
if(!x)return 1;
return (Fac[y]*((Inv[x]*Inv[y-x])%mod))%mod;
}
int A[N],Pow_10[N];
char S[N];
bool MOP2;
inline void _main() {
int n=Read(),k=Read(),Ans=0,tot=0;
scanf("%s",S),Fac[0]=Pow_10[0]=Inv[0]=1;
if(!k) {
int Ans=0;
ret(i,0,n)Ans=(Ans*10+(S[i]^48))%mod;
printf("%lld\n",Ans);
return;
}
rep(i,1,n) {
Fac[i]=(Fac[i-1]*i)%mod;
Pow_10[i]=(Pow_10[i-1]*10)%mod;
Inv[i]=Pow(Fac[i]);
}
A[0]=C(k-1,n-2);
int P=n-k-1;
rep(i,0,P)A[i]=(A[i-1]+Pow_10[i]*C(k-1,n-i-2))%mod;
rep(i,P+1,n)A[i]=A[i-1];
rep(i,0,P)A[i]=(A[i]+Pow_10[i]*C(k,n-i-2));
ret(i,0,n)Ans=(Ans+(S[i]^48)*A[n-i-1])%mod;
printf("%lld\n",Ans);
}
signed main() {
_main();
return 0;
}
CodeForces-520E Pluses everywhere的更多相关文章
- 【CodeForces 520E】Pluses everywhere
题意 n个数里插入k个+号,所有式子的和是多少(取模1000000007) (0 ≤ k < n ≤ 105). 分析 1.求答案,考虑每个数作为i位数(可为答案贡献10的i-1次方,个位i=1 ...
- Educational Codeforces Round 90 (Rated for Div. 2) C. Pluses and Minuses(差分)
题目链接:https://codeforces.com/contest/1373/problem/C 题意 给出一个只含有 $+$ 或 $-$ 的字符串 $s$,按如下伪代码进行操作: res = 0 ...
- Codeforces Round #295 (Div. 1) C. Pluses everywhere
昨天ZZD大神邀请我做一道题,说这题很有趣啊. 哇,然后我被虐了. Orz ZZD 题目大意: 你有一个长度为n的'0-9'串,你要在其中加入k个'+'号,每种方案就会形成一个算式,算式算出来的值记做 ...
- CodeForces - 589A
题目链接:http://codeforces.com/problemset/problem/589/A Polycarp has quite recently learned about email ...
- python爬虫学习(5) —— 扒一下codeforces题面
上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...
- 【Codeforces 738D】Sea Battle(贪心)
http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...
- 【Codeforces 738C】Road to Cinema
http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...
- 【Codeforces 738A】Interview with Oleg
http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...
- CodeForces - 662A Gambling Nim
http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...
- CodeForces - 274B Zero Tree
http://codeforces.com/problemset/problem/274/B 题目大意: 给定你一颗树,每个点上有权值. 现在你每次取出这颗树的一颗子树(即点集和边集均是原图的子集的连 ...
随机推荐
- 《python cookbook》学习笔记
2016.5.3 第8章 类与对象 8.1 改变对象的字符串显示 __str__ 和 __repr__ %s 和 %r,提到了eval,我没有用过 8.2 自定义字符串的格式化 __forma ...
- TTTTTTTTTTTTTTTTTT POJ 2724 奶酪消毒机 二分匹配 建图 比较难想
Purifying Machine Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 5004 Accepted: 1444 ...
- HDU 6136 Death Podracing (堆)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=6136 题解 完了,普及题都不会做了... 发现一个重要性质是只有相邻的人才会相撞,于是直接拿堆维护即可 ...
- JavaWeb_初识过滤器Filter
菜鸟教程 传送门 过滤器Filter::JavaWeb三大组件之一,它与Servlet很相似,过滤器是用来拦截请求的,而不是处理请求的 当用户请求某个Servlet时,会先执行部署在这个请求上的Fil ...
- kafka offset存储
存储方式 方式 方式来源 存储位置 自动提交 kafka kafka 异步提交 kafka kafka checkpoint spark streaming hdfs hbase存储 程序开发 hba ...
- JAVA源文件中可以包含多个类
可以的,一个“.java”源文件里面可以包含多个类,但是只允许有一个public类,并且类名必须和文件名一直:例如: package test; public class test { } class ...
- Vue.js---配置开发环境
首先安装Node.js我就不介绍了! win+r , 输入cmd,回车: 1.安装淘宝镜像 在国内直接使用npm的官方镜像是比较慢的,这里我们采用的是淘宝镜像 npm install -g cnpm ...
- bootstrap 学习笔记(部分)
这个课程中的boostrap是3.0+版本的.(2.0与3.0有区别) bootstrap中的JS是依赖于jquery的,所以需要事先引用jquery(1.9.0版本以上). <!DOCTYPE ...
- P2239 螺旋矩阵
P2239 螺旋矩阵 题解 这题看上去是个暴力,但是你看数据范围啊,暴力会炸 实际上这是一道数学题QWQ 先看看螺旋矩阵是个什么亚子吧 好吧,找找规律 1 2 ... ... ... ... ... ...
- hdu5747 Aaronson 贪心
Aaronson Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total ...