poj 3685 Matrix 二分套二分 经典题型
Time Limit: 6000MS | Memory Limit: 65536K | |
Total Submissions: 5724 | Accepted: 1606 |
Description
Given a N × N matrix A, whose element in the i-th row and j-th column Aij is an number that equals i2 + 100000 × i + j2 - 100000 × j + i × j, you are to find the M-th smallest element in the matrix.
Input
The first line of input is the number of test case.
For each test case there is only one line contains two integers, N(1 ≤ N ≤ 50,000) and M(1 ≤ M ≤ N × N). There is a blank line before each test case.
Output
For each test case output the answer on a single line.
Sample Input
12 1 1 2 1 2 2 2 3 2 4 3 1 3 2 3 8 3 9 5 1 5 25 5 10
Sample Output
3
-99993
3
12
100007
-199987
-99993
100019
200013
-399969
400031
-99939
Source
#include<cstdio>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <algorithm>
#include <set>
using namespace std;
#define MM(a) memset(a,0,sizeof(a))
typedef long long LL;
typedef unsigned long long ULL;
const int mod = ;
const double eps = 1e-;
const int inf = 0x3f3f3f3f;
long long mid,l,r,n,m;
long long v(long long i,long long j)
{
return i*i+*i+j*j-*j+i*j;
}
long long ok(long long x)
{
long long sum=;
for(long long j=;j<=n;j++)
{
long long l=,r=n+; /*2.这个地方r不能初始化为n,因为假设
n个数全是<x的话,按理讲应该sum+=n的,但是最后r-1之后sum+=(n-1)了,
这是因为v(n,j)>x和v(n,j)=x的效果是不同的,假设v(n,j)>x的话,r仍然为n+1,sum+//=n,而当v(n,j)=x话,r更新为n,sum+=n-1;*/
while(r-l>)
{
long long mid=(l+r)>>;
if(v(mid,j)>=x)
r=mid;
else
l=mid;
}
sum+=(r-);
}
return sum;
}
int main()
{
int cas;
scanf("%d",&cas);
while(cas--)
{
scanf("%lld %lld",&n,&m);
r=1e12;l=-1e12;
while(r-l>)
{
mid=(l+r)>>;
if(ok(mid)>=m)
r=mid;
else
l=mid;
}
printf("%lld\n",r-);
}
return ;
}
poj 3685 Matrix 二分套二分 经典题型的更多相关文章
- poj 3579 Median 二分套二分 或 二分加尺取
Median Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5118 Accepted: 1641 Descriptio ...
- poj3579 二分套二分
和poj3685类似,都是二分答案然后在判断时再二分 这题的内层二分可以用stl代替 /* 二分套二分,思路:升序排序数据,先二分答案x进行判断,判断时枚举每个元素,二分找到和其之差小于等于x的所有值 ...
- POJ-3579 Median---二分第k大(二分套二分)
题目链接: https://cn.vjudge.net/problem/POJ-3579 题目大意: 求的是一列数所有相互之间差值的序列的最中间的值是多少. 解题思路: 可以用二分套二分的方法求解第m ...
- POJ 3685 Matrix (二分套二分)
Matrix Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 8674 Accepted: 2634 Descriptio ...
- POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】
任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K To ...
- POJ 3685 Matrix 二分 函数单调性 难度:2
Memory Limit: 65536K Total Submissions: 4637 Accepted: 1180 Description Given a N × N matrix A, ...
- poj 3685 Matrix 【二分】
<题目链接> 题目大意: 给你一个n*n的矩阵,这个矩阵中的每个点的数值由 i2 + 100000 × i + j2 - 100000 × j + i × j 这个公式计算得到,N( ...
- POJ 3685 二分套二分
Matrix Given a N × N matrix A, whose element in the i-th row and j-th column Aij is an number that e ...
- POJ 3233 Matrix Power Series 二分+矩阵乘法
链接:http://poj.org/problem?id=3233 题意:给一个N*N的矩阵(N<=30),求S = A + A^2 + A^3 + - + A^k(k<=10^9). 思 ...
随机推荐
- Java 虚拟机的运行模式
这几天在读周志明老师的<深入理解JVM虚拟机> 讲到了 java的运行模式, 有mixed 模式 interpret模式还有compile模式.效果如下面所示 java -version ...
- 【转贴】Windows virtio 驱动
Windows virtio 驱动 https://blog.51cto.com/dangzhiqiang/1833615 去年去中建总部的时候用过. 发现很多搞openstack的人都不清楚这一块的 ...
- 【Python】【基础知识】【内置函数】【dir的使用方法】
原英文帮助文档: dir([object]) Without arguments, return the list of names in the current local scope. With ...
- CSP前模板复习
Tarjan 求强连通分量 展开查看 #include #include #include using namespace std; const int N = 1e4 + 1e3; int n, m ...
- WPF中Brush类型
画刷Brush使用 画刷类 SolidColorBrush LinearGradientBrush RadialGradientBrush ImageBrush VisualBrush Drawing ...
- Git 一般性操作
git全局设定 git config --global user.name “码云账号” git config --global user.email “码云注册邮箱” git 定位文件夹cd进入到需 ...
- java web实现同一账号在不同浏览器不能同时登录
网上看了很多方法,个人也看了,自己也总结了几个比较常用的: 前提都是用session监听器,对session的创建与销毁进行监听 一.在用户登录时保存该用户的状态有这几种保存方式: 1.保存到内存中( ...
- 线程的函数中调用MFC对话框类的变量
线程的函数中调用MFC对话框类的变量多线程传输文件的对话框 现在想要在对话框上添加一个进度条 为进度条映射变量m_progress这就需要在传输一段文件后就更新m_progress的值使进度条前进 也 ...
- oracle重置dba用户密码
1.进入sqlplus里面: [oracle@master ~]$ sqlplus / as sysdba SQL*Plus: Release 12.1.0.2.0 Production on Tue ...
- centos 7 搭建 LNMP ( Linux+Nginx+MySQL+PHP )
操作系统 | CentOS Linux release 7.6.1810 (Core) [root@localhost ~# cat /etc/redhat-release CentOS Linux ...