霍尔定理 + 线段树?

咱学学霍尔定理...

霍尔定理和二分图完美匹配有关,具体而言,就是定义了二分图存在完美匹配的充要条件:

不妨设当前二分图左端集合为 X ,右端集合为 Y ,X 与 Y 之间的边集为 E

令 \(\omega(x)\) 表示在 Y 中能通过 E 与 x 中元素相连的元素数量,那么

$\forall x\in X, |x| \le |\omega(x)| $ 为 X 与 Y 存在完美匹配的充要条件...

然后咱发现,多加上 t 个人的话,也就是必然会让 \(|\omega(x)|\) 增加 t

那么咱就知道了,t 需要满足以下条件:

\[\forall x\in X, |x| \le |\omega(x)|+t
\]

\[\rightarrow t \ge |x| - |\omega(x)|
\]

\[\rightarrow t \ge |x| +min_R - max_L -1 - m
\]

\(min_R\) 和 \(max_L\) 表示 x 集合中所有人的最小的 R 和最大的 L

这样咱用线段树搞扫描线就行辣

//by Judge
#include<bits/stdc++.h>
#define Rg register
#define fp(i,a,b) for(Rg int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(Rg int i=(a),I=(b)-1;i>I;--i)
#define ll long long
using namespace std;
const int M=2e5+3;
#ifndef Judge
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
#endif
char buf[1<<21],*p1=buf,*p2=buf;
inline int read(){ int x=0,f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0'; return x*f;
} int n,m,ans,t[M<<2],Tag[M<<2]; vector<int> val[M];
#define ls k<<1
#define rs k<<1|1
#define mid ((l+r)>>1)
#define lson ls,l,mid
#define rson rs,mid+1,r
inline int Max(int x,int y){ return x>y?x:y; }
inline void pushup(int k){ t[k]=Max(t[ls],t[rs]); }
inline void pushdown(int k){ if(!Tag[k]) return ;
Tag[ls]+=Tag[k],Tag[rs]+=Tag[k];
t[ls]+=Tag[k],t[rs]+=Tag[k],Tag[k]=0;
}
void build(int k,int l,int r){
if(l==r) return t[k]=l,void();
build(lson),build(rson),pushup(k);
}
void update(int k,int l,int r,int L,int R){
if(L<=l&&r<=R) return ++Tag[k],++t[k],void(); if(l>R||L>r) return ;
pushdown(k),update(lson,L,R),update(rson,L,R),pushup(k);
}
int query(int k,int l,int r,int L,int R){
if(L<=l&&r<=R) return t[k]; if(l>R||L>r) return 0;
return pushdown(k),Max(query(lson,L,R),query(rson,L,R));
}
int main(){ int l,r; n=read(),m=read()+1,ans=n-m+1;
fp(i,1,n) l=read(),r=read(),val[l].push_back(r);
build(1,0,m);
fp(L,0,m-1){
fp(j,0,val[L].size()-1) update(1,0,m,0,val[L][j]);
ans=Max(ans,query(1,0,m,L+1,m)-m-L);
} return !printf("%d\n",ans);
}

[AtCoder ARC076] F Exhausted?的更多相关文章

  1. ARC076 F Exhausted? Hall定理 + 线段树扫描线

    ---题面--- 题目大意: 有n个人,m个座位,每个人可以匹配的座位是[1, li] || [ri, m],可能有人不需要匹配座位(默认满足),问最少有多少人不能被满足. 题解: 首先可以看出这是一 ...

  2. arc076 F - Exhausted? (霍尔定理学习)

    题目链接 Problem Statement There are M chairs arranged in a line. The coordinate of the i-th chair ($$$1 ...

  3. 2017国家集训队作业[arc076d/f][Exhausted?]

    2017国家集训队作业[arc076d/f][Exhausted?] 题意: ​ 有\(N\)个人,\(M\)把椅子,给出\(...L_i.R_i\)表示第\(i\)个人可以选择编号为\(1\sim ...

  4. Atcoder abc187 F Close Group(动态规划)

    Atcoder abc187 F Close Group 题目 给出一张n个点,m条边的无向图,问删除任意数量的边后,留下来的最少数量的团的个数(\(n \le 18\) ) 题解 核心:枚举状态+动 ...

  5. 【AtCoder ARC076】F Exhausted? 霍尔定理+线段树

    题意 N个人抢M个椅子,M个椅子排成一排 ,第i个人只能坐[1,Li]∪[Ri,M],问最多能坐多少人 $i$人连边向可以坐的椅子构成二分图,题意即是求二分图最大完美匹配,由霍尔定理,答案为$max( ...

  6. AtCoder Regular Contest 076 F - Exhausted?

    题意: n个人抢m个凳子,第i个人做的位置必须小于li或大于ri,问最少几个人坐不上. 这是一个二分图最大匹配的问题,hall定理可以用来求二分图最大匹配. 关于hall定理及证明,栋爷博客里有:ht ...

  7. AtCoder F - Exhausted?

    传送门 sxy题解: //Achen #include<algorithm> #include<iostream> #include<cstring> #inclu ...

  8. 【题解】 AtCoder ARC 076 F - Exhausted? (霍尔定理+线段树)

    题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: ...

  9. 【ATcoder s8pc_3 F】 寿司

    http://s8pc-3.contest.atcoder.jp/tasks/s8pc_3_f (题目链接) 题意 有一个长度为$N$的数列$A$,初始为$0$.$Q$次操作,每次两个参数$x,y$. ...

随机推荐

  1. vue中的:is

    is string | Object (组件的选项对象) <div id="app"> <span>这是:is的案例</span> <co ...

  2. webpack配置反向代理

    devServer: { contentBase: path.resolve(__dirname, "../dev"), compress: true, port: ,//本身的端 ...

  3. WEB上传一个文件夹

    在Web应用系统开发中,文件上传和下载功能是非常常用的功能,今天来讲一下JavaWeb中的文件上传和下载功能的实现. 先说下要求: PC端全平台支持,要求支持Windows,Mac,Linux 支持所 ...

  4. 特征提取算法(2)——HOG特征提取算法

    histogram of oriented gradient(方向梯度直方图)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.H ...

  5. Springboot-H2DB

    为什么在Springboot中用H2DB 用Springboot开发需要连接数据库的程序的时候,使用H2DB作为内存数据库可以很方便的调试程序. 怎么用 1.加入依赖 <dependency&g ...

  6. 转载:mybatis中<![CDATA[]]>的作用

    作者:QH_JAVA 来源:CSDN 原文:https://blog.csdn.net/qh_java/article/details/50755655?utm_source=copy 在使用myba ...

  7. requirejs define a module

    https://requirejs.org/docs/api.html#define Define a Module § 1.3 A module is different from a tradit ...

  8. Python Django的安装配置

    学习Django前,我们要确定电脑上是否已经安装了Python,目前Python有两个版本,不过这两个版本并不互相兼容,所以根据个人选择合适的版本. 因为从Django2.0开始将不再支持Python ...

  9. sshd使用

    sshd服务 1.sshd介绍     sshd为secure shell的简称:可以通过网络在主机中开机shell的服务 连接方式(在客户端):ssh username@ip  #文本模式      ...

  10. 在一个shell中查看管理 任务(前台和后台)/工作jobs 的命令

    在一个shell中查看管理 任务(前台和后台)/工作jobs 的命令 jobs是在同一个shell环境而言, 才有意义的. 为什么有jobs这个命令? 是因为, 如果从cmd line运行gui程序时 ...