统计$[L,R]$内LIS长度为$k$的数的个数,$Q \le 10000,L,R < 2^{63}-1,k \le 10$。


首先肯定是数位DP。然后考虑怎么做这个dp。如果把$k$记录到状态里没有用。需要找到有效方法统一的表示前面填好的数的特点方便之后的填数。

回顾LIS过程,当前数结尾的LIS是前面比他小的数的LIS中的max+1,但是没有办法记录下来,因为如果记录下前面以数字$0\sim 9$结尾的maxLIS的话空间不够。

尝试换一种表示方法。回顾LIS的$O(nlogn)$做法,发现维护了一个$g$数组表示长度$i$的LIS结尾最小$g[i]$,这个数组是单调增的。

这是发现可以方便记录——用一个数$S$,把二进制第$g[i]$位$\text{or}$到$S$上去。这样,$S$中是$1$的位置从小到大写下来就是$g$数组了。

设$f(len,S,n,lead,limit)$,$S$是之前填好的数的$g$数组,$n$是前面的最长LIS长度。枚举当前位填啥,通过二分确定新的$S$,然后边界判一下是否$n=k$就好了。


code细节:

  • 注意到$k$是相互独立的,可以分别进行统计,$f[k][...]$表示满足……条件(见上)之下、LIS长度为$k$的数的个数。
  • 注意判断前导0。
  • 加了一些剪枝,虽然并没有什么用。
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#define dbg(x) cerr << #x << " = " << x <<endl
using namespace std;
typedef long long ll;
typedef double db;
typedef pair<int,int> pii;
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline char MIN(T&A,T B){return A>B?(A=B,):;}
template<typename T>inline char MAX(T&A,T B){return A<B?(A=B,):;}
template<typename T>inline void _swap(T&A,T&B){A^=B^=A^=B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
ll f[][][<<][],b[],tot;
ll L,R;
int T,k;
ll dp(int len,int S,int n,int lead,int limit){
if(!len)return n==k;
if(n>k||n+len<k)return ;
if(!limit&&~f[k][len][S][lead])return f[k][len][S][lead];
int num=limit?b[len]:;ll ret=;
if(lead){
ret+=dp(len-,S,n,lead,limit&&!num);
for(register int i=;i<=num;++i)ret+=dp(len-,<<i,,,limit&&i==num);
}
else{
int a[]={},m=;
for(register int i=;i<=;++i)if(S&(<<i))a[++m]=i;
for(register int i=;i<=num;++i){
int pos=lower_bound(a+,a+m+,i)-a;
if(pos>m)ret+=dp(len-,S|(<<i),n+,,limit&&i==num);
else ret+=dp(len-,S^(<<a[pos])|(<<i),n,,limit&&i==num);
}
}
return limit?ret:f[k][len][S][lead]=ret;
}
inline ll solve(ll x){
tot=;while(x)b[++tot]=x%,x/=;
return dp(tot,,,,);
} int main(){//freopen("test.in","r",stdin);//freopen("test.ans","w",stdout);
read(T);memset(f,-,sizeof f);
for(register int i=;i<=T;++i)
read(L),read(R),read(k),printf("Case #%d: %lld\n",i,solve(R)-solve(L-));
return ;
}

总结:还是那句话,用有效的方法表示好填好的数的性质。

hdu4352 XHXJ's LIS[数位DP套状压DP+LIS$O(nlogn)$]的更多相关文章

  1. 树形DP和状压DP和背包DP

    树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...

  2. dp乱写1:状态压缩dp(状压dp)炮兵阵地

    https://www.luogu.org/problem/show?pid=2704 题意: 炮兵在地图上的摆放位子只能在平地('P') 炮兵可以攻击上下左右各两格的格子: 而高原('H')上炮兵能 ...

  3. poj2411 Mondriaan's Dream (轮廓线dp、状压dp)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17203   Accepted: 991 ...

  4. dp,状压dp等 一些总结

    也就作业几题而已,分析一下提醒 最重要的就是,记住,没用的状态无论怎么转移最后都会是没用的状态,所以每次转移以后的有值的状态都是有用的状态. 几种思考方向: 第一种:枚举当前的状态,转移成另外一个状态 ...

  5. BZOJ 4042 Luogu P4757 [CERC2014]Parades (树形DP、状压DP)

    题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=4042 (Luogu) https://www.luogu.org/prob ...

  6. hdu4352 XHXJ's LIS (数位dp)

    Problem Description #define xhxj (Xin Hang senior sister(学姐))  If you do not know xhxj, then careful ...

  7. hoj 2662 经典状压dp // MyFirst 状压dp

    题目链接:http://acm.hit.edu.cn/hoj/problem/view?id=2662 1.引言:用dp解决一个问题的时候很重要的一环就是状态的表示,一般来说,一个数组即可保存状态. ...

  8. hdu4352 XHXJ's LIS(数位DP + LIS + 状态压缩)

    #define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefully reading the entire ...

  9. 【BZOJ3925】地震后的幻想乡(期望概率DP,状压DP)

    题意:给定一张点数不超过10的无向连通图,每条边有一个[0,1]之间的随机权值,求最小生成树上最大边的期望值 提示:对于n个[0,1]之间的随机变量x1,x2,...,xn,第k小的那个的期望值是k/ ...

随机推荐

  1. MongoDB 走马观花(全面解读篇)(转载)

    MongoDB 走马观花(全面解读篇)(转载)   目录 一.简介 二.基本模型 BSON 数据类型 分布式ID 三.操作语法 四.索引 索引特性 索引分类 索引评估.调优 五.集群 分片机制 副本集 ...

  2. ES5与ES6常用语法教程之 ①函数写法、创建对象、导入导出模块方式

    函数写法区别 计算a, b两个数字之和,有返回值 es5 写法 function add(a, b) { return a + b; } es6 写法(箭头函数) let add = (a, b) = ...

  3. CTF—攻防练习之HTTP—命令执行漏洞

    渗透环境: 主机:192.168.32.152 靶机:192.168.32.1 命令执行漏洞 命令执行漏洞概念:当应用需要调用一些外部程序去处理内容的情况下,就会用到一些执行系统命令的函数.如PHP中 ...

  4. HighGo瀚高数据库4.3版本安装说明

    1. 通过与瀚高同事沟通, 获取到安装文件(点赞一下瀚高的同事, 效率很高并且说明的很完整) 瀚高是基于postgresql数据库做的深度定制开发的国产数据库. 不仅仅支持x86 也支持龙芯等全国产安 ...

  5. 那些年,我们见过的 Java 服务端乱象

    导读 查尔斯·狄更斯在<双城记>中写道:“这是一个最好的时代,也是一个最坏的时代.” 移动互联网的快速发展,出现了许多新机遇,很多创业者伺机而动:随着行业竞争加剧,互联网红利逐渐消失,很多 ...

  6. GitHub从小白到熟悉<五>

    GitHub    主页 

  7. Linux-1.4文件操作命令(grep,cat,tail,head,less,find,chmod,tail,less)

    Linux基础命令(grep,cat,tail,head,less,find,chmod,tail,less) grep(常用) grep 指定“文件”搜索文件内容 grep hello 1.txt ...

  8. 【笔记】vue实现简单项目和页面跳转

    此项目适合不会前端,不会vue的人. 不会vue真正的开发,这里用vue和vant-ui简单搭一个商城app的tabbar和页面跳转. 装vue-cli3.0 根据官网快速上手搭建vant项目,官网 ...

  9. java中接口知识点大总结

    接口的确很不好理解!!!!!那我来好好总结一下: 首先要理解接口是一个独立存在的,和类是不一样的东西,所以,直接用接口的定义是: 访问权限控制符 interface 接口名 [extends  接口列 ...

  10. private修饰的方法可以通过反射访问,那么private的意义是什么?

    反射代码: package test; public class Person { private String userName= "Tom"; private void pla ...