ZROI 19.08.07模拟赛
写在前面:为了保护正睿题目版权,这里不放题面,只写题解。
“正睿从来没有保证,模拟赛的题目必须原创。”
“文案不是我写的,有问题找喵老师去。”——蔡老师
- A
R爷再次翻车,搞出来了一道六年前的CF题。
\(100pts:\)
然而不是原题也很简单,斜率优化板子,单调队列搞一下就完事了。
也可以wqs二分,复杂度可以做到\(O(m\log m)\),\(与\)p\(无关。所以R爷差点把\)p$出到\(10^5\)。
- B
本题乱搞做法非常多,所以R爷动用了权限来卡乱搞。
然而R爷还是非常良心的,给能AC的乱搞留了\(50pts\)。
“把地鼠拔出来。”——钱爷爷
\(100pts:\)
倒着做,考虑哪些状态可以到达终态,看其中有没有初态。
每次找一个同行同列没有其他空格的空格,同时把同行同列的格子全部赋为“叠加态”。
由于同行同列没有其他空格,所以不会导致无解,可以贪心。
叠加态也可以作为空格使用。
会有若干行、列全是叠加态,最后判一下每个行列至少要有一个地鼠。
- C
感性理解一下\(F(x)\),发现它的意义是\(x\)能开的最大的\(k\)次方根,开根之后的结果。
\(54pts:\)
经典莫反。
\[ans=\sum_{i=2}^n F(n)~~~~~~~~~~~~\]
\[=\sum_{i=2}^n \prod_{j} p_j^{\frac{q_j}{\gcd(q)}}\]
\[~~~~~~~~~~~~~~~~~~~~=\sum_{k}\sum_{i=2}^n \sqrt[k]{i}\cdot [\gcd(q)=k]\]
\[~~~~~~~~~~~~~~~~=\sum_{k}\sum_{i=2}^{\sqrt[k]{n}}i\cdot [\gcd(q)=1]\]
\[~~~~~~~~~~~~=\sum_{k}\sum_{i=2}^{\sqrt[k]{n}}i\sum_{d|\gcd(q)}\mu(d)\]
\[~~~~~~~~~=\sum_{k}\sum_d \mu(d)\sum_{i=2}^{\sqrt[kd]{n}}i^d\]
\[~~~~~~~~=\sum_{T}\sum_{d|T}\sum_{i=2}^{\sqrt[T]{n}}\mu(d)i^d\]
后面那堆幂求和随便插值一下就好了。
\(100pts:\)
高精度开\(k\)次根,可以二进制压位,压到\(2^{30}\)左右就可以卡过去。
顺便高精度开\(k\)次根的方法是先二分一个长度,再二分具体的值。每次做一个高精快速幂判断大小即可。
真是一道防AK好题。/cy/qiang
ZROI 19.08.07模拟赛的更多相关文章
- ZROI 19.08.09模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(70pts:\) 维护一个栈,从一侧向另一侧扫描,如果新加入的元素与当前栈顶相同,则出栈,否则进栈.显然一个子串是括号序列,当 ...
- ZROI 19.08.06模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. 今天正睿又倒闭了,从删库到跑路. 天祺鸽鸽txdy! A "不要像个小学生一样一分钟就上来问东西."--蔡老板 虽 ...
- ZROI 19.08.12模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "我发现问题的根源是大家都不会前缀和."--敦爷 A 敦爷spj写错了,差点把蒟蒻swk送走 \(50pts:\) ...
- ZROI 19.08.11模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. dlstql,wsl A \(10pts:\) \(a=100,T=100\),对每个排列构造一个反的,一步到位即可. \(20pts ...
- ZROI 19.08.10模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(20pts:\) 枚举操作序列然后暴力跑,复杂度\(O(6^n)\). \([50,80]pts:\) 枚举改成dfs,每层操 ...
- ZROI 19.08.05模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. A \(21pts:\) 随便枚举,随便爆搜就好了. \(65pts:\) 比较显然的dp,设\(f_{i,j,k}\)表示在子树\( ...
- ZROI 19.08.04模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. "这应该是正睿OI历史上第一次差评破百的比赛." "这说明来正睿集训的人越来越多了." &qu ...
- ZROI 19.08.08模拟赛
传送门 写在前面:为了保护正睿题目版权,这里不放题面,只写题解. 首先恭喜swk今天翻车! "小心大样例演你."--天祺鸽鸽 果然swk今天被大样例演死了,天祺鸽鸽诚不欺我! A ...
- ZROI 19.08.02 杂题选讲
给出\(n\)个数,用最少的\(2^k\)或\(-2^{k}\),使得能拼出所有数,输出方案.\(n,|a_i|\leq 10^5\). 显然一个绝对值最多选一次.这个性质非常强. 如果所有都是偶数, ...
随机推荐
- 使用apicloud开发移动端APP,IOS list页面滚动卡顿解决记录
给内容容器添加样式:-webkit-overflow-scrolling:touch; -webkit-overflow-scrolling:属性控制元素在移动设备上是否使用滚动回弹效果. auto: ...
- PHP加速器eAccelerator安装
程序说明 eAccelerator是一个自由开放源码php加速器,优化和动态内容缓存,提高了php脚本的缓存性能,使得PHP脚本在编译的状态下,对 服务器的开销几乎为零. 它还有对脚本起优化作用,以加 ...
- SO BAPI SD_SALESDOCUMENT_CREATE
DATA: E_ORDER_HEADER_IN LIKE BAPISDHD1 OCCURS 0 WITH HEADER LINE, E_ORDER_PARTNERS LIK ...
- rhel安装ambari
RHEL/CentOS/Oracle Linux 6 On a server host that has Internet access, use a command line editor to p ...
- python基础-并发编程之I/O模型基础
1. I/O模型介绍 1.1 I/O模型基础 更好的理解I/O模型,需要先回顾:同步.异步.阻塞.非阻塞 同步:执行完代码后,原地等待,直至出现结果 异步:执行完代码后,不等待,继续执行其他事务(常与 ...
- Prometheus Querying Function rate() vs irate()
rate() rate(v range-vector) calculates the per-second average rate of increase of the time series in ...
- mybatis多对多级联查询
1.实体 package com.govmade.govdata.modules.sys.pojo; import java.util.List; import javax.persistence.T ...
- Confluence6.9配置邮件服务器
一.调整confluence服务 1.在confluence安装目录下的server.xml中加一段邮件服务器的配置,加在confluence的Context中 <Context path=&q ...
- 第六周&Java实验报告四(类的继承)
一.实验目的 (1)掌握类的继承 (2)变量的继承和覆盖,方法的继承,重载和覆盖的实现: 二.实验的内容 (1)根据下面的要求实现圆类Circle. 1.圆类Circle的成员变量:radius表示圆 ...
- Spring(七)--Spring JDBC
Spring JDBC 1.需要的实体类和数据库 2.需要的dao层 package com.xdf.dao; import com.xdf.bean.Student; import org.spri ...