日志=>flume=>kafka=>spark streaming=>hbase
日志=>flume=>kafka=>spark streaming=>hbase
日志部分
#coding=UTF-8
import random
import time url_paths = [
"class/112.html",
"class/128.html",
"learn/821",
"class/145.html",
"class/146.html",
"class/131.html",
"class/130.html",
"course/list"
] ip_slices = [132,156,124,10, 29, 167,143,187,30, 46, 55, 63, 72, 87,98,168] http_referers = [
"http://www.baidu.com/s?wd={query}",
"http://www.sogou.com/web?query={query}",
"https://search.yahoo.com/search?p={query}",
"http://www.bing.com/search?q={query}"
] search_keyword = ["Spark SQL实战", "Hadoop基础", "Storm实战", "Spark Streaming实战", "大数据面试"] status_codes = ["", "", ""] def sample_url():
return random.sample(url_paths,1)[0] def sample_ip():
slice = random.sample(ip_slices,4)
return ".".join([str(item) for item in slice]) def sample_status_code():
return random.sample(status_codes,1)[0] def sample_referer():
if random.uniform(0, 1) > 0.2:
return "-" refer_str = random.sample(http_referers, 1)
query_str = random.sample(search_keyword, 1)
return refer_str[0].format(query=query_str[0]) def generate_log(count=3):
time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
f = open("/home/hadoop/data/project/logs/access.log", "w+")
while count >= 1:
query_log = "{ip}\t[{local_time}]\t\"GET /{url} HTTP/1.1\"\t{status_code}\t\"{referer}\"".format(ip=sample_ip() , local_time=time_str, url=sample_url(), status_code=sample_status_code(), referer=sample_referer())
print query_log
f.write(query_log + "\n")
count = count - 1 if __name__ == '__main__':
#print sample_ip()
#print sample_url()
generate_log(10)
flume对接日志部分
exec-memory-kafka.conf
#exec-memory-kafka exec-memory-kafka.sources = exec-source
exec-memory-kafka.channels = memory-channel
exec-memory-kafka.sinks = kafka-sink exec-memory-kafka.sources.exec-source.type = exec
exec-memory-kafka.sources.exec-source.command = tail -F /home/hadoop/data/project/logs/access.log
exec-memory-kafka.sources.exec-source.shell = /bin/sh -c
exec-memory-kafka.sources.exec-source.channels = memory-channel exec-memory-kafka.channels.memory-channel.type = memory exec-memory-kafka.sinks.kafka-sink.type = org.apache.flume.sink.kafka.KafkaSink
exec-memory-kafka.sinks.kafka-sink.topic = streamingtopic
exec-memory-kafka.sinks.kafka-sink.brokerList = hadoop:9092
exec-memory-kafka.sinks.kafka-sink.batchSize = 5
exec-memory-kafka.sinks.kafka-sink.requiredAcks = 1
exec-memory-kafka.sinks.kafka-sink.channel = memory-channel
flume-ng agent \
--name exec-memory-kafka \
--conf $FLUME_HOME/conf \
--conf-file /home/hadoop/data/project/exec-memory-kafka.conf \
-Dflume.root.logger=INFO,console
启动kafka测试消费:kafka-console-consumer.sh --zookeeper hadoop:2181 --topic streamingtopic --from-beginning
启动Hadoop:start-dfs.sh
启动hbase: start-hbase.sh
进入hbase shell:hbase shell -> 查看: list
hbase表设计:
create 'lin_course_clickcount' ,'info'
create 'lin_course_search_clickcount','info'
查看表:scan 'lin_course_clickcount'
rowkey设计:
day_courseid
day_search_courseid
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion> <groupId>com.lin.spark</groupId>
<artifactId>SparkStreaming</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<scala.version>2.11.8</scala.version>
<kafka.version>0.9.0.0</kafka.version>
<spark.version>2.2.0</spark.version>
<hadoop.version>2.6.0-cdh5.7.0</hadoop.version>
<hbase.version>1.2.0-cdh5.7.0</hbase.version>
</properties> <!--添加cloudera的repository-->
<repositories>
<repository>
<id>cloudera</id>
<url>https://repository.cloudera.com/artifactory/cloudera-repos</url>
</repository>
</repositories> <dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency> <!-- Kafka 依赖-->
<!--
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.11</artifactId>
<version>${kafka.version}</version>
</dependency>
--> <!-- Hadoop 依赖-->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
</dependency> <!-- HBase 依赖-->
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
<version>${hbase.version}</version>
</dependency> <dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-server</artifactId>
<version>${hbase.version}</version>
</dependency> <!-- Spark Streaming 依赖-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>${spark.version}</version>
</dependency> <!-- Spark Streaming整合Flume 依赖-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume_2.11</artifactId>
<version>${spark.version}</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume-sink_2.11</artifactId>
<version>${spark.version}</version>
</dependency> <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
<version>${spark.version}</version>
</dependency> <dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-lang3</artifactId>
<version>3.5</version>
</dependency> <!-- Spark SQL 依赖-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${spark.version}</version>
</dependency> <dependency>
<groupId>com.fasterxml.jackson.module</groupId>
<artifactId>jackson-module-scala_2.11</artifactId>
<version>2.6.5</version>
</dependency> <dependency>
<groupId>net.jpountz.lz4</groupId>
<artifactId>lz4</artifactId>
<version>1.3.0</version>
</dependency> <dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.38</version>
</dependency> <dependency>
<groupId>org.apache.flume.flume-ng-clients</groupId>
<artifactId>flume-ng-log4jappender</artifactId>
<version>1.6.0</version>
</dependency> </dependencies> <build>
<!--
<sourceDirectory>src/main/scala</sourceDirectory>
<testSourceDirectory>src/test/scala</testSourceDirectory>
-->
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>
<args>
<arg>-target:jvm-1.5</arg>
</args>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-eclipse-plugin</artifactId>
<configuration>
<downloadSources>true</downloadSources>
<buildcommands>
<buildcommand>ch.epfl.lamp.sdt.core.scalabuilder</buildcommand>
</buildcommands>
<additionalProjectnatures>
<projectnature>ch.epfl.lamp.sdt.core.scalanature</projectnature>
</additionalProjectnatures>
<classpathContainers>
<classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer>
<classpathContainer>ch.epfl.lamp.sdt.launching.SCALA_CONTAINER</classpathContainer>
</classpathContainers>
</configuration>
</plugin>
</plugins>
</build>
<reporting>
<plugins>
<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<configuration>
<scalaVersion>${scala.version}</scalaVersion>
</configuration>
</plugin>
</plugins>
</reporting> </project>
package com.lin.spark.streaming.project.spark import com.lin.spark.streaming.project.dao.{CourseClickCountDAO, CourseSearchClickCountDAO}
import com.lin.spark.streaming.project.domain.{ClickLog, CourseClickCount, CourseSearchClickCount}
import com.lin.spark.streaming.project.utils.DateUtils
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext} import scala.collection.mutable.ListBuffer /**
* Created by Administrator on 2019/6/6.
*/
object StatStreamingApp {
def main(args: Array[String]): Unit = { if (args.length != 4) {
System.err.println("参数有误!")
System.exit(1)
}
//hadoop:2181 test streamingtopic 2
val Array(zkQuorum, group, topics, numThreads) = args
val conf = new SparkConf().setAppName("KafkaUtil").setMaster("local[4]")
val ssc = new StreamingContext(conf, Seconds(60)) val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap val clickLog = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2) val cleanData = clickLog.map(line => {
val infos = line.split("\t")
//29.98.156.124 2019-06-06 05:37:01 "GET /class/131.html HTTP/1.1" 500 http://www.baidu.com/s?wd=Storm实战
//case class ClickLog(ip:String, time:String, courseId:Int, statusCode:Int, referer:String)
var courseId = 0
val url = infos(2).split(" ")(1)
if (url.startsWith("/class")) {
val urlHTML = url.split("/")(2)
courseId = urlHTML.substring(0, urlHTML.lastIndexOf(".")).toInt
}
ClickLog(infos(0), DateUtils.parseToMinute(infos(1)), courseId, infos(3).toInt, infos(4))
}).filter(clickLog => clickLog.courseId != 0) //存储点击日志
cleanData.map(log => {
(log.time.substring(0, 8) + "_" + log.courseId, 1)
}).reduceByKey(_ + _).foreachRDD(rdd => {
rdd.foreachPartition(partitionReconrds => {
val list = new ListBuffer[CourseClickCount]
partitionReconrds.foreach(pair => {
list.append(CourseClickCount(pair._1, pair._2))
})
CourseClickCountDAO.save(list)
})
}) //存储查询点击日志
cleanData.map(log => { val referer = log.referer.replaceAll("//", "/")
val splits = referer.split("/")
var host = ""
if (splits.length > 2) {
host = splits(1)
}
(host, log.courseId, log.time)
}).filter(x => {
x._1 != ""
}).map(searchLog=>{
(searchLog._3.substring(0,8) + "_" + searchLog._1 + "_" + searchLog._2 , 1)
}).reduceByKey(_ + _).foreachRDD(rdd => {
rdd.foreachPartition(partitionReconrds => {
val list = new ListBuffer[CourseSearchClickCount]
partitionReconrds.foreach(pair => {
list.append(CourseSearchClickCount(pair._1, pair._2))
})
CourseSearchClickCountDAO.save(list)
})
}) ssc.start()
ssc.awaitTermination()
}
}
package com.lin.spark.streaming.project.utils import java.util.Date import org.apache.commons.lang3.time.FastDateFormat /**
* Created by Administrator on 2019/6/6.
*/
object DateUtils { val YYYYMMDDHHMMSS_FORMAT = FastDateFormat.getInstance("yyyy-MM-dd HH:mm:ss")
val TARGE_FORMAT = FastDateFormat.getInstance("yyyyMMddHHmmss") def getTime(time:String) ={
YYYYMMDDHHMMSS_FORMAT.parse(time).getTime
} def parseToMinute(time:String)={
TARGE_FORMAT.format(new Date(getTime(time)))
} def main(args: Array[String]): Unit = {
println(parseToMinute("2017-10-22 14:46:01"))
}
}
package com.lin.spark.streaming.project.domain case class ClickLog(ip:String, time:String, courseId:Int, statusCode:Int, referer:String)
package com.lin.spark.streaming.project.domain /**
* Created by Administrator on 2019/6/7.
*/
case class CourseClickCount(day_course:String,click_course:Long)
package com.lin.spark.streaming.project.domain /**
* Created by Administrator on 2019/6/7.
*/
case class CourseSearchClickCount(day_search_course:String, click_count:Long)
package com.lin.spark.streaming.project.dao import com.lin.spark.project.utils.HBaseUtils
import com.lin.spark.streaming.project.domain.CourseClickCount
import org.apache.hadoop.hbase.client.Get
import org.apache.hadoop.hbase.util.Bytes import scala.collection.mutable.ListBuffer /**
* Created by Administrator on 2019/6/7.
*/
object CourseClickCountDAO { val tableName = "lin_course_clickcount"
val cf = "info"
val qualifer = "click_count" def save(list:ListBuffer[CourseClickCount]):Unit={
val table =HBaseUtils.getInstance().getTable(tableName)
for (ele <- list){
table.incrementColumnValue(Bytes.toBytes(ele.day_course),
Bytes.toBytes(cf),
Bytes.toBytes(qualifer),
ele.click_course)
}
} def count(day_course:String):Long={
val table = HBaseUtils.getInstance().getTable(tableName)
val get = new Get(Bytes.toBytes(day_course))
val value = table.get(get).getValue(cf.getBytes,qualifer.getBytes)
if(value == null){
0L
}else{
Bytes.toLong(value)
}
} def main(args: Array[String]): Unit = {
val list = new ListBuffer[CourseClickCount]
list.append(CourseClickCount("20190606",99))
list.append(CourseClickCount("20190608",89))
list.append(CourseClickCount("20190609",100))
// save(list)
println(count("20190609"))
}
}
package com.lin.spark.streaming.project.dao import com.lin.spark.project.utils.HBaseUtils
import com.lin.spark.streaming.project.domain.{CourseClickCount, CourseSearchClickCount}
import org.apache.hadoop.hbase.client.Get
import org.apache.hadoop.hbase.util.Bytes import scala.collection.mutable.ListBuffer /**
* Created by Administrator on 2019/6/7.
*/
object CourseSearchClickCountDAO { val tableName = "lin_course_search_clickcount"
val cf = "info"
val qualifer = "click_count" def save(list:ListBuffer[CourseSearchClickCount]):Unit={
val table =HBaseUtils.getInstance().getTable(tableName)
for (ele <- list){
table.incrementColumnValue(Bytes.toBytes(ele.day_search_course),
Bytes.toBytes(cf),
Bytes.toBytes(qualifer),
ele.click_count)
}
} def count(day_course:String):Long={
val table = HBaseUtils.getInstance().getTable(tableName)
val get = new Get(Bytes.toBytes(day_course))
val value = table.get(get).getValue(cf.getBytes,qualifer.getBytes)
if(value == null){
0L
}else{
Bytes.toLong(value)
}
} def main(args: Array[String]): Unit = {
val list = new ListBuffer[CourseSearchClickCount]
list.append(CourseSearchClickCount("20190606_www.baidu.com_99",99))
list.append(CourseSearchClickCount("20190608_www.bing.com_89",89))
list.append(CourseSearchClickCount("20190609_www.csdn.net_100",100))
save(list)
// println(count("20190609"))
}
}
日志=>flume=>kafka=>spark streaming=>hbase的更多相关文章
- flume+kafka+spark streaming整合
1.安装好flume2.安装好kafka3.安装好spark4.流程说明: 日志文件->flume->kafka->spark streaming flume输入:文件 flume输 ...
- 基于Kafka+Spark Streaming+HBase实时点击流案例
背景 Kafka实时记录从数据采集工具Flume或业务系统实时接口收集数据,并作为消息缓冲组件为上游实时计算框架提供可靠数据支撑,Spark 1.3版本后支持两种整合Kafka机制(Receiver- ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十)安装hadoop2.9.0搭建HA
如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二十一)NIFI1.7.1安装
一.nifi基本配置 1. 修改各节点主机名,修改/etc/hosts文件内容. 192.168.0.120 master 192.168.0.121 slave1 192.168.0.122 sla ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十一)定制一个arvo格式文件发送到kafka的topic,通过Structured Streaming读取kafka的数据
将arvo格式数据发送到kafka的topic 第一步:定制avro schema: { "type": "record", "name": ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(九)安装kafka_2.11-1.1.0
如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(八)安装zookeeper-3.4.12
如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(三)安装spark2.2.1
如何搭建配置centos虚拟机请参考<Kafka:ZK+Kafka+Spark Streaming集群环境搭建(一)VMW安装四台CentOS,并实现本机与它们能交互,虚拟机内部实现可以上网.& ...
- demo2 Kafka+Spark Streaming+Redis实时计算整合实践 foreachRDD输出到redis
基于Spark通用计算平台,可以很好地扩展各种计算类型的应用,尤其是Spark提供了内建的计算库支持,像Spark Streaming.Spark SQL.MLlib.GraphX,这些内建库都提供了 ...
随机推荐
- CentOS7.6系统安装zabbix3.4.8客户端
一. 准备安装包 将本地的zabbix-3.4.8软件包上传至服务器, 二. 安装依赖包 安装依赖包:yum install gcc* pcre* psmisc -y 三. 安 ...
- shell脚本实现ftp上传下载文件
前段时间工作中需要将经过我司平台某些信息核验数据提取后上传到客户的FTP服务器上,以便于他们进行相关的信息比对核验.由于包含这些信息的主机只有4台,采取的策略是将生成的4个文件汇集到一个主机上,然后在 ...
- 关于springmvc 整合jackson报错问题
spring mvc 在整合jackson中报错如下 Context initialization failed org.springframework.beans.factory.BeanCreat ...
- [IOI1998]Polygon(区间dp)
[IOI1998]Polygon 题意翻译 多边形是一个玩家在一个有n个顶点的多边形上的游戏,如图所示,其中n=4.每个顶点用整数标记,每个边用符号+(加)或符号*(乘积)标记. 第一步,删除其中一条 ...
- java23种设计模式(三)-- 适配器模式
一.适配器模式 转载:https://www.cnblogs.com/V1haoge/p/6479118.html 适配器就是一种适配中间件,它存在于不匹配的二者之间,用于连接二者,将不匹配变得匹配, ...
- MySQL入门常用命令
使用本地 MySQL,系统 Ubuntu. mysql -u root -p 输入 root 用户的密码进入MySQL: mysql>
- vue中使用canvas绘制签名
不多说,上代码: <template> <div class="sign-canvas"> <canvas ...
- css----overflow(布局)
CSS overflow 属性用于控制内容溢出元素框时显示的方式. CSS Overflow CSS overflow 属性可以控制内容溢出元素框时在对应的元素区间内添加滚动条. overflow属性 ...
- c++ 预处理指令#define, #endif...
常见的预处理指令有: # 空指令,无任何效果 # include 包含一个源代码文件 #define 定义宏 #undef 取消已定义的宏 #if 如果给定条件为真,则编译下面代码 #ifdef 如果 ...
- Angular JS - 4 - Angular JS 作用域与控制器对象
1. 控制器对象使用 <!DOCTYPE html> <html> <head lang="en"> <meta charset=&quo ...