tensorflow源码分析——CTC
CTC是2006年的论文Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks中提到的,论文地址: http://www.cs.toronto.edu/~graves/icml_2006.pdf
论文中CTC的定义是这样的:把对未分割的序列数据label的任务叫做Temporal Classification,把使用RNNs对未分割的序列数据label叫做Connectionist Temporal Classification(CTC) 。与之相对的是,把对数据序列的每一个time-step或者frame独立label 叫做framewise classification
tensorflow中的相关实现在 /tensorflow/python/ops/ctc_ops.py
1. ctc_loss, 计算ctc loss
def ctc_loss(labels, inputs, sequence_length,
preprocess_collapse_repeated=False,
ctc_merge_repeated=True, time_major=True):
这个类执行softmax操作,所以输入应该是LSTM输出的线性映射
inputs, 最内部维度大小是num_classes,代表“num_labels +1” 个类别,其中num_labels是真实的balebs的数目,最大值“num_labels-1”是为blank label保留的
例如,如果一个单词包含3个labels ‘[a, b, c]’,则num_classes =4, 且labels的索引号是 ‘{a:0, b:1, c:2, blank:3}’
至于参数 preprocess_collapse_repeated 和 ctc_merge_repeated:
如果 preprocess_collapse_repeated = True ,在计算ctc之前,重复的labels会被合并为一个labels。这种预处理对下面这种情况是有用的:如果训练数据是强制对齐得到的,会包含不必要的重复。
如果 ctc_merge_repeated = False,那么伴随ctc计算的深入,重复的非blank将不会被合并,会被解释为独立的labels。这是ctc的简化的非标准的版本
具体见下表
- preprocess_collapse_repeated = False,ctc_merge_repeated = True:经典CTC,输出的真实的重复的中间带有blanks类别,也可以通过解码器解码,输出不带有blanks的重复类别
- preprocess_collapse_repeated = True,ctc_merge_repeated = False:因为在training之前,input 的labels已经合并重复项了,所以不会输出重复的类
- preprocess_collapse_repeated = False,ctc_merge_repeated = False:输出重复的中间带有blank的类别,但是通常不需要解码器合并重复项
- preprocess_collapse_repeated = True,ctc_merge_repeated = True: 未测试,非常可能不会学会输出重复类
参数:
labels: int32 SparseTensor, 标准的输出,稀疏矩阵
inputs: 3-D float tensor . 计算得到的logits。 如果time_major = False, shape:batch_size x max_time x num_classes. 如果 time_major = True, shape:max_time x batch_size x num_classes
sequence_length: 1-D int32 向量, batch_size
输出:
1-D float tensor,size:[batch], 概率的负对数
2. ctc_beam_search_decoder: 对输入的logits执行beam search 解码
def ctc_beam_search_decoder(inputs, sequence_length, beam_width=100,
top_paths=1, merge_repeated=True):
如果 merge_repeated = True, 在输出的beam中合并重复类。这意味着如果一个beam中的连续项( consecutive entries) 相同,只有第一个提交。即,如果top path 是‘A B B B ’,返回值是‘A B’(当merge_repeated = True),‘A B B B ’ (当merge_repeated = False)
参数:
inputs: 3-D float tensor , shape:max_time x batch_size x num_classes
sequence_length: 1-D int32 向量, batch_size
beam_width: int scalar>=0
top_paths: int scalar>=0, <= beam_width, 输出解码后的数目
输出:
元组:(decoded, log_prob)
其中:
decoded : a list of length top_paths, 每一个是一个稀疏矩阵
log_prob : matrix , shape (batch_size x top_paths)
tensorflow源码分析——CTC的更多相关文章
- tensorflow源码分析
前言: 一般来说,如果安装tensorflow主要目的是为了调试些小程序的话,只要下载相应的包,然后,直接使用pip install tensorflow即可. 但有时我们需要将Tensorflow的 ...
- tensorflow源码分析——BasicLSTMCell
BasicLSTMCell 是最简单的LSTMCell,源码位于:/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py.BasicLSTMC ...
- tensorflow源码分析——LSTMCell
LSTMCell 是最简单的LSTMCell,源码位于:/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py.LSTMCell 继承了RNN ...
- 图解tensorflow 源码分析
http://www.cnblogs.com/yao62995/p/5773578.html https://github.com/yao62995/tensorflow
- [tensorflow源码分析] Conv2d卷积运算 (前向计算,反向梯度计算)
- [图解tensorflow源码] 入门准备工作附常用的矩阵计算工具[转]
[图解tensorflow源码] 入门准备工作 附常用的矩阵计算工具[转] Link: https://www.cnblogs.com/yao62995/p/5773142.html tensorf ...
- [图解tensorflow源码] 入门准备工作
tensorflow使用了自动化构建工具bazel.脚本语言调用c或cpp的包裹工具swig.使用EIGEN作为矩阵处理工具.Nvidia-cuBLAS GPU加速计算库.结构化数据存储格式prot ...
- [图解tensorflow源码] [原创] Tensorflow 图解分析 (Session, Graph, Kernels, Devices)
TF Prepare [图解tensorflow源码] 入门准备工作 [图解tensorflow源码] TF系统概述篇 Session篇 [图解tensorflow源码] Session::Run() ...
- TensorFlow源码框架 杂记
一.为什么我们需要使用线程池技术(ThreadPool) 线程:采用“即时创建,即时销毁”策略,即接受请求后,创建一个新的线程,执行任务,完毕后,线程退出: 线程池:应用软件启动后,立即创建一定数量的 ...
随机推荐
- js 判断图片和视频是否加载成功
图片: 失败: // 方法 1:更换图片地址 $('img').error(function(){ $(this).attr('src', '加载失败.png'); }); // 方法 2:隐藏它 $ ...
- 吴恩达深度学习:2.15python中的广播
1.Broadcasting example (1)下面矩阵描述了来自四种不同的100克碳水化合物,蛋白质和脂肪的卡路里数量 比如说100g苹果所含的热量有56克来自碳水化合物,相比之下来自蛋白质和脂 ...
- J2EE WEB应用架构分析
1. 架构概述 J2EE体系包括java server pages(JSP) ,java SERVLET, enterprise bean,WEB service等技术.这些技术的出现给电子商务时代的 ...
- xml发post请求
# python3字符串换行,在右边加个反斜杠 body = '<?xml version="1.0" encoding = "UTF-8"?>' ...
- Ajax轮询请求
Ajax轮询请求 什么是轮询? 轮询(polling):客户端按规定时间定时向服务端发送ajax请求,服务器接到请求后马上返回响应信息并关闭连接. Ajax轮询需要服务器有很快的处理速度与快速响应. ...
- Nginx 故障实例
linux vi 操作提示 Found a swap file by the name "/usr/local/nginx/conf/.nginx.conf.swp" 解决方法: ...
- 索尼展示基于MicroLED技术的16K显示屏:约780吋
尽管 8K 彩电刚刚在消费级市场崭露头角,更极致的 16K 却已不慌不忙地登场了. 在日前于拉斯维加斯举办的 NAB 2019 展会上,索尼就秀出了旗下的 16K 显示设备,它目前正在日本横滨的资生堂 ...
- Tableau Dashboard
Dashboard仪表盘,用来展示多个图表,并展示之间的联动,分析数据.
- bash: ipconfig: command not found
问题描述: [root@localhost ~]# ipconfig-bash: ipconfig: command not found[root@localhost ~]# 解决方法一: cd /e ...
- 【NOIP2016提高A组模拟8.15】Throw
题目 分析 首先对于一个状态(a,b,c),假定a<=b<=c: 现在考虑一下这个状态,的转移方案: \[1,中间向两边跳(a,b,c)-->(a*2-b,a,c).(a,b,c)- ...