namespace polysum {
const int D=;
ll a[D],f[D],g[D],p[D],p1[D],p2[D],b[D],h[D][],C[D];
ll calcn(int d,ll *a,ll n) {//d次多项式(a[0-d])求第n项
if (n<=d) return a[n];
p1[]=p2[]=;
rep(i,,d+) {
ll t=(n-i+mod)%mod;
p1[i+]=p1[i]*t%mod;
}
rep(i,,d+) {
ll t=(n-d+i+mod)%mod;
p2[i+]=p2[i]*t%mod;
}
ll ans=;
rep(i,,d+) {
ll t=g[i]*g[d-i]%mod*p1[i]%mod*p2[d-i]%mod*a[i]%mod;
if ((d-i)&) ans=(ans-t+mod)%mod;
else ans=(ans+t)%mod;
}
return ans;
}
void init(int M) {//初始化预处理阶乘和逆元(取模乘法)
f[]=f[]=g[]=g[]=;
rep(i,,M+) f[i]=f[i-]*i%mod;
g[M+]=powmod(f[M+],mod-);
per(i,,M+) g[i]=g[i+]*(i+)%mod;
}
ll polysum(ll n,ll *a,ll m) { // a[0].. a[m] \sum_{i=0}^{n-1} a[i]
// m次多项式求第n项前缀和
a[m+]=calcn(m,a,m+);
rep(i,,m+) a[i]=(a[i-]+a[i])%mod;
return calcn(m+,a,n-);
}
ll qpolysum(ll R,ll n,ll *a,ll m) { // a[0].. a[m] \sum_{i=0}^{n-1} a[i]*R^i
if (R==) return polysum(n,a,m);
a[m+]=calcn(m,a,m+);
ll r=powmod(R,mod-),p3=,p4=,c,ans;
h[][]=;h[][]=;
rep(i,,m+) {
h[i][]=(h[i-][]+a[i-])*r%mod;
h[i][]=h[i-][]*r%mod;
}
rep(i,,m+) {
ll t=g[i]*g[m+-i]%mod;
if (i&) p3=((p3-h[i][]*t)%mod+mod)%mod,p4=((p4-h[i][]*t)%mod+mod)%mod;
else p3=(p3+h[i][]*t)%mod,p4=(p4+h[i][]*t)%mod;
}
c=powmod(p4,mod-)*(mod-p3)%mod;
rep(i,,m+) h[i][]=(h[i][]+h[i][]*c)%mod;
rep(i,,m+) C[i]=h[i][];
ans=(calcn(m,C,n)*powmod(R,n)-c)%mod;
if (ans<) ans+=mod;
return ans;
}
}

拉格朗日插值法板子(dls)的更多相关文章

  1. Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法

    本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...

  2. 拉格朗日插值法——用Python进行数值计算

    插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关 ...

  3. CPP&MATLAB实现拉格朗日插值法

    开始学习MATLAB(R和Python先放一放...),老师推荐一本书,看完基础就是各种算法...首先是各种插值.先说拉格朗日插值法,这原理楼主完全不懂的,查的维基百科,好久才看懂.那里讲的很详细,这 ...

  4. codeforces 622F. The Sum of the k-th Powers 拉格朗日插值法

    题目链接 求sigma(i : 1 to n)i^k. 为了做这个题这两天真是补了不少数论, 之前连乘法逆元都不知道... 关于拉格朗日插值法, 我是看的这里http://www.guokr.com/ ...

  5. bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法

    4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status ...

  6. 集训DAYn——拉格朗日插值法

    看zzq大佬的博客,看到了这个看似很深奥的东西,实际很简单(反正比FFT简单,我是一个要被FFT整疯了的孩子) 拉格朗日插值法 是什么 可以找到一个多项式,其恰好在各个观测点取到观测到的值.这样的多项 ...

  7. 牛客网多校训练第一场 F - Sum of Maximum(容斥原理 + 拉格朗日插值法)

    链接: https://www.nowcoder.com/acm/contest/139/F 题意: 分析: 转载自:http://tokitsukaze.live/2018/07/19/2018ni ...

  8. 【BZOJ3453】XLkxc [拉格朗日插值法]

    XLkxc Time Limit: 20 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 给定 k,a,n,d,p f(i ...

  9. Educational Codeforces Round 7 F. The Sum of the k-th Powers 拉格朗日插值法

    F. The Sum of the k-th Powers 题目连接: http://www.codeforces.com/contest/622/problem/F Description Ther ...

随机推荐

  1. Adam作者大革新, 联合Hinton等人推出全新优化方法Lookahead

    Adam作者大革新, 联合Hinton等人推出全新优化方法Lookahead   参与:思源.路.泽南 快来试试 Lookahead 最优化方法啊,调参少.收敛好.速度还快,大牛用了都说好. 最优化方 ...

  2. Java中「与运算,或运算,异或运算,取反运算。」

    版权声明一:本文为博主原创文章,转载请附上原文出处链接和本声明.版权声明二:本网站的所有作品会及时更新,欢迎大家阅读后发表评论,以利作品的完善.版权声明三:对不遵守本声明或其他违法.恶意使用本网内容者 ...

  3. a标签的download属性

    a标签加上downlaod属性后,就可完成对href属性链接文件的下载,但仅仅是限于同源文件,如果是非同源,download属性会失效. 无download属性的时候,a标签的默认行为是链接跳转进行预 ...

  4. vue组件之子组件和父组件

    在看官网和学习的过程中,有些不明确子组件和父组件的定义,为了方便后期学习和理解去网站上搜索了一下相关的解释 1.使用的地方是父组件,定义的地方是子组件,虽然他们是同一个组件 2.Vue.compone ...

  5. mybatis查询返回的对象不为null,但是属性值为null

    返回的对象不为null,但是属性值为null 代码如下: <resultMap id="BaseResultMap" type="com.trhui.ebook.d ...

  6. Notepad++ 文件丢失了,找回历史文件方法

    一开始我还以为文件丢失找不到了,心凉了半截,后来找到了它的备份路径 C:\Users\Administrator\AppData\Roaming\Notepad++\backup

  7. (转)Ubuntu换源方法

    I. 查看系统版本及内核 首先查看自己的ubuntu系统的codename,这一步很重要,直接导致你更新的源是否对你的系统起效果,查看方法: lsb_release -a 如,我的系统显示: No L ...

  8. python根据已有数据库生成model.py

    有时我们需要根据已存在的数据库进行django开发时,手写model.py是不现实的 先执行下面的语句,在命令行终端会输出所有表的类 python .\manage.py inspectdb 检查无误 ...

  9. Linux grep命令 -- 三剑客老三

    常用选项 -E :开启扩展(Extend)的正则表达式. -i :忽略大小写(ignore case). -v :反过来(invert),只打印没有匹配的,而匹配的反而不打印. -n :显示行号 -w ...

  10. RT-Thread中的串口DMA分析

    这里分析一下RT-Thread中串口DMA方式的实现,以供做新处理器串口支持时的参考. 背景 在如今的芯片性能和外设强大功能的情况下,串口不实现DMA/中断方式操作,我认为在实际项目中基本是不可接受的 ...