namespace polysum {
const int D=;
ll a[D],f[D],g[D],p[D],p1[D],p2[D],b[D],h[D][],C[D];
ll calcn(int d,ll *a,ll n) {//d次多项式(a[0-d])求第n项
if (n<=d) return a[n];
p1[]=p2[]=;
rep(i,,d+) {
ll t=(n-i+mod)%mod;
p1[i+]=p1[i]*t%mod;
}
rep(i,,d+) {
ll t=(n-d+i+mod)%mod;
p2[i+]=p2[i]*t%mod;
}
ll ans=;
rep(i,,d+) {
ll t=g[i]*g[d-i]%mod*p1[i]%mod*p2[d-i]%mod*a[i]%mod;
if ((d-i)&) ans=(ans-t+mod)%mod;
else ans=(ans+t)%mod;
}
return ans;
}
void init(int M) {//初始化预处理阶乘和逆元(取模乘法)
f[]=f[]=g[]=g[]=;
rep(i,,M+) f[i]=f[i-]*i%mod;
g[M+]=powmod(f[M+],mod-);
per(i,,M+) g[i]=g[i+]*(i+)%mod;
}
ll polysum(ll n,ll *a,ll m) { // a[0].. a[m] \sum_{i=0}^{n-1} a[i]
// m次多项式求第n项前缀和
a[m+]=calcn(m,a,m+);
rep(i,,m+) a[i]=(a[i-]+a[i])%mod;
return calcn(m+,a,n-);
}
ll qpolysum(ll R,ll n,ll *a,ll m) { // a[0].. a[m] \sum_{i=0}^{n-1} a[i]*R^i
if (R==) return polysum(n,a,m);
a[m+]=calcn(m,a,m+);
ll r=powmod(R,mod-),p3=,p4=,c,ans;
h[][]=;h[][]=;
rep(i,,m+) {
h[i][]=(h[i-][]+a[i-])*r%mod;
h[i][]=h[i-][]*r%mod;
}
rep(i,,m+) {
ll t=g[i]*g[m+-i]%mod;
if (i&) p3=((p3-h[i][]*t)%mod+mod)%mod,p4=((p4-h[i][]*t)%mod+mod)%mod;
else p3=(p3+h[i][]*t)%mod,p4=(p4+h[i][]*t)%mod;
}
c=powmod(p4,mod-)*(mod-p3)%mod;
rep(i,,m+) h[i][]=(h[i][]+h[i][]*c)%mod;
rep(i,,m+) C[i]=h[i][];
ans=(calcn(m,C,n)*powmod(R,n)-c)%mod;
if (ans<) ans+=mod;
return ans;
}
}

拉格朗日插值法板子(dls)的更多相关文章

  1. Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法

    本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...

  2. 拉格朗日插值法——用Python进行数值计算

    插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关 ...

  3. CPP&MATLAB实现拉格朗日插值法

    开始学习MATLAB(R和Python先放一放...),老师推荐一本书,看完基础就是各种算法...首先是各种插值.先说拉格朗日插值法,这原理楼主完全不懂的,查的维基百科,好久才看懂.那里讲的很详细,这 ...

  4. codeforces 622F. The Sum of the k-th Powers 拉格朗日插值法

    题目链接 求sigma(i : 1 to n)i^k. 为了做这个题这两天真是补了不少数论, 之前连乘法逆元都不知道... 关于拉格朗日插值法, 我是看的这里http://www.guokr.com/ ...

  5. bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法

    4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status ...

  6. 集训DAYn——拉格朗日插值法

    看zzq大佬的博客,看到了这个看似很深奥的东西,实际很简单(反正比FFT简单,我是一个要被FFT整疯了的孩子) 拉格朗日插值法 是什么 可以找到一个多项式,其恰好在各个观测点取到观测到的值.这样的多项 ...

  7. 牛客网多校训练第一场 F - Sum of Maximum(容斥原理 + 拉格朗日插值法)

    链接: https://www.nowcoder.com/acm/contest/139/F 题意: 分析: 转载自:http://tokitsukaze.live/2018/07/19/2018ni ...

  8. 【BZOJ3453】XLkxc [拉格朗日插值法]

    XLkxc Time Limit: 20 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 给定 k,a,n,d,p f(i ...

  9. Educational Codeforces Round 7 F. The Sum of the k-th Powers 拉格朗日插值法

    F. The Sum of the k-th Powers 题目连接: http://www.codeforces.com/contest/622/problem/F Description Ther ...

随机推荐

  1. Http option 请求是怎么回事

    在前后台分离的项目中,经常会遇到浏览器想服务端发送一个post/patch请求,实际上产生了两个请求,一个是Option,另一个才是真实的Post/Patch请求, 而get请求则不会产生Option ...

  2. 12 Scrapy框架的日志等级和请求传参

    一.Scrapy的日志等级 - 在使用scrapy crawl spiderFileName运行程序时,在终端里打印输出的就是scrapy的日志信息. - 日志信息的种类: ERROR : 一般错误 ...

  3. Docker 环境下部署 redash

    环境: centos7 官网:https://redash.io/help/open-source/dev-guide/docker 一.安装步骤 1.虚拟机安装 安装vmware,并安装centos ...

  4. jquery重复绑定

    jquery可以重复绑定一个事件handler,如果一个button绑定了3次onclick,那么点一下按钮就触发三次事件处理程序的调用. 所以如果想动态地变更控件绑定的处理程序,只要unbind() ...

  5. windows10 mysql主从复制配置

    注意:mysql主从复制,主从版本要一致! 生手永远在学习的路上,为了学习mysql主从复制,实现读写分离,于是在本地安装多个mysql实例来进行验证. 也因此有了下面的笔记,一来自我总结一下经验,二 ...

  6. 00常见的Linux系统版本

    linux系统内核与linux发行套件系统并不相同: linux系统内核指的是一个由Linus Torvalds负责维护,提供硬件抽象层.硬盘及文件系统控制及多任务功能的系统核心程序. linux发行 ...

  7. ubuntu搭建gerrit+gitweb代码审核系统

    一.Gerrit的简介 Gerrit是Google开源的一套基于web的代码review工具,它是基于git的版本管理系统.Google开源Gerrit旨在提供一个轻量级框架,用于在代码入库之前对每个 ...

  8. 《编译原理》求 FIRSTVT 集和 LASTVT 集的步骤 - 例题解析

    <编译原理>求 FIRSTVT 集和 LASTVT 集的步骤 - 例题解析 算符优先关系表的构造中涉及到求 FIRSTVT 集和 LASTVT 集. 表示及含义: FIRSTVT(T) 非 ...

  9. 解决Iview 中 input 无法监听 enter 事件

    比如 我们想要在某个组件的根元素监听一个原生事件 可以使用 .native 修饰 v-on 例子: 这样子写 enter事件将无效 但是使用 .native 修饰 就可以监听到 enter事件啦.

  10. java多线程之生产者消费者模型

    public class ThreadCommunication{ public static void main(String[] args) { Queue q = new Queue();//创 ...