namespace polysum {
const int D=;
ll a[D],f[D],g[D],p[D],p1[D],p2[D],b[D],h[D][],C[D];
ll calcn(int d,ll *a,ll n) {//d次多项式(a[0-d])求第n项
if (n<=d) return a[n];
p1[]=p2[]=;
rep(i,,d+) {
ll t=(n-i+mod)%mod;
p1[i+]=p1[i]*t%mod;
}
rep(i,,d+) {
ll t=(n-d+i+mod)%mod;
p2[i+]=p2[i]*t%mod;
}
ll ans=;
rep(i,,d+) {
ll t=g[i]*g[d-i]%mod*p1[i]%mod*p2[d-i]%mod*a[i]%mod;
if ((d-i)&) ans=(ans-t+mod)%mod;
else ans=(ans+t)%mod;
}
return ans;
}
void init(int M) {//初始化预处理阶乘和逆元(取模乘法)
f[]=f[]=g[]=g[]=;
rep(i,,M+) f[i]=f[i-]*i%mod;
g[M+]=powmod(f[M+],mod-);
per(i,,M+) g[i]=g[i+]*(i+)%mod;
}
ll polysum(ll n,ll *a,ll m) { // a[0].. a[m] \sum_{i=0}^{n-1} a[i]
// m次多项式求第n项前缀和
a[m+]=calcn(m,a,m+);
rep(i,,m+) a[i]=(a[i-]+a[i])%mod;
return calcn(m+,a,n-);
}
ll qpolysum(ll R,ll n,ll *a,ll m) { // a[0].. a[m] \sum_{i=0}^{n-1} a[i]*R^i
if (R==) return polysum(n,a,m);
a[m+]=calcn(m,a,m+);
ll r=powmod(R,mod-),p3=,p4=,c,ans;
h[][]=;h[][]=;
rep(i,,m+) {
h[i][]=(h[i-][]+a[i-])*r%mod;
h[i][]=h[i-][]*r%mod;
}
rep(i,,m+) {
ll t=g[i]*g[m+-i]%mod;
if (i&) p3=((p3-h[i][]*t)%mod+mod)%mod,p4=((p4-h[i][]*t)%mod+mod)%mod;
else p3=(p3+h[i][]*t)%mod,p4=(p4+h[i][]*t)%mod;
}
c=powmod(p4,mod-)*(mod-p3)%mod;
rep(i,,m+) h[i][]=(h[i][]+h[i][]*c)%mod;
rep(i,,m+) C[i]=h[i][];
ans=(calcn(m,C,n)*powmod(R,n)-c)%mod;
if (ans<) ans+=mod;
return ans;
}
}

拉格朗日插值法板子(dls)的更多相关文章

  1. Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法

    本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...

  2. 拉格朗日插值法——用Python进行数值计算

    插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关 ...

  3. CPP&MATLAB实现拉格朗日插值法

    开始学习MATLAB(R和Python先放一放...),老师推荐一本书,看完基础就是各种算法...首先是各种插值.先说拉格朗日插值法,这原理楼主完全不懂的,查的维基百科,好久才看懂.那里讲的很详细,这 ...

  4. codeforces 622F. The Sum of the k-th Powers 拉格朗日插值法

    题目链接 求sigma(i : 1 to n)i^k. 为了做这个题这两天真是补了不少数论, 之前连乘法逆元都不知道... 关于拉格朗日插值法, 我是看的这里http://www.guokr.com/ ...

  5. bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法

    4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status ...

  6. 集训DAYn——拉格朗日插值法

    看zzq大佬的博客,看到了这个看似很深奥的东西,实际很简单(反正比FFT简单,我是一个要被FFT整疯了的孩子) 拉格朗日插值法 是什么 可以找到一个多项式,其恰好在各个观测点取到观测到的值.这样的多项 ...

  7. 牛客网多校训练第一场 F - Sum of Maximum(容斥原理 + 拉格朗日插值法)

    链接: https://www.nowcoder.com/acm/contest/139/F 题意: 分析: 转载自:http://tokitsukaze.live/2018/07/19/2018ni ...

  8. 【BZOJ3453】XLkxc [拉格朗日插值法]

    XLkxc Time Limit: 20 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 给定 k,a,n,d,p f(i ...

  9. Educational Codeforces Round 7 F. The Sum of the k-th Powers 拉格朗日插值法

    F. The Sum of the k-th Powers 题目连接: http://www.codeforces.com/contest/622/problem/F Description Ther ...

随机推荐

  1. 前端html+css标签简介(可能就我自己看的懂-。-)

    标签集合 # html 文字标签:修改样式 -<font></font> -属性:size:大小,范围1-7,大于7时默认7 color:颜色,英文单词或者十六进制(editp ...

  2. Reatful规范

    Reatful规范 drf框架的作用 作用:写接口 什么是接口: URL(前后台信息交互的媒介) 明确了请求方式,提供对应后台所需参数,请求url链接可以得到后台的相应数据 怎么写接口: 参照某种规则 ...

  3. [Nest] 02.nest之控制器

    控制器 Controller Nest 的核心概念 模块 Module 控制器 Controller 服务与依赖注入 Provider Dependency injection 控制器负责处理应用的特 ...

  4. MySQL性能优化(四):SQL优化

    原文:MySQL性能优化(四):SQL优化 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/ ...

  5. Abp添加新的Api(不扩展底层方法)

    定义新的实体类:FileManage;继承 FullAuditedEntity<Guid> 在XX.Application 中定义IXXservice及实现XXservice public ...

  6. luogu题解 P2212 【浇地Watering the Fields】

    题目链接: https://www.luogu.org/problemnew/show/P2212 思路: 一道最小生成树裸题(最近居然变得这么水了),但是因为我太蒻,搞了好久,不过借此加深了对最小生 ...

  7. k8s的一些基本命令

    kubernetes用到的一些命令 kubectl管理工具以及命令 基础命令:create,delete,get,run,expose,set,explain,edit. create命令:根据文件或 ...

  8. java基础2(Map)

    1.请简述Map 的特点 Map每个元素由键与值两部分组成 Map键不能重复,每个键对应一个值 键和值可以为null 2.说出Entry键值对对象遍历Map集合的原理. Map中存放的是两种对象,一种 ...

  9. centos6.8 上传文件到amazon s3

    centos6.8 上传文件到amazon s3 0.参考 AWS CLI Cinnabd Reference Possible to sync a single file with aws s3 s ...

  10. SpringBoot核心特性之组件自动装配

    写在前面 spring boot能够根据依赖的jar包自动配置spring boot的应用,例如: 如果类路径中存在DispatcherServlet类,就会自动配置springMvc相关的Bean. ...