namespace polysum {
const int D=;
ll a[D],f[D],g[D],p[D],p1[D],p2[D],b[D],h[D][],C[D];
ll calcn(int d,ll *a,ll n) {//d次多项式(a[0-d])求第n项
if (n<=d) return a[n];
p1[]=p2[]=;
rep(i,,d+) {
ll t=(n-i+mod)%mod;
p1[i+]=p1[i]*t%mod;
}
rep(i,,d+) {
ll t=(n-d+i+mod)%mod;
p2[i+]=p2[i]*t%mod;
}
ll ans=;
rep(i,,d+) {
ll t=g[i]*g[d-i]%mod*p1[i]%mod*p2[d-i]%mod*a[i]%mod;
if ((d-i)&) ans=(ans-t+mod)%mod;
else ans=(ans+t)%mod;
}
return ans;
}
void init(int M) {//初始化预处理阶乘和逆元(取模乘法)
f[]=f[]=g[]=g[]=;
rep(i,,M+) f[i]=f[i-]*i%mod;
g[M+]=powmod(f[M+],mod-);
per(i,,M+) g[i]=g[i+]*(i+)%mod;
}
ll polysum(ll n,ll *a,ll m) { // a[0].. a[m] \sum_{i=0}^{n-1} a[i]
// m次多项式求第n项前缀和
a[m+]=calcn(m,a,m+);
rep(i,,m+) a[i]=(a[i-]+a[i])%mod;
return calcn(m+,a,n-);
}
ll qpolysum(ll R,ll n,ll *a,ll m) { // a[0].. a[m] \sum_{i=0}^{n-1} a[i]*R^i
if (R==) return polysum(n,a,m);
a[m+]=calcn(m,a,m+);
ll r=powmod(R,mod-),p3=,p4=,c,ans;
h[][]=;h[][]=;
rep(i,,m+) {
h[i][]=(h[i-][]+a[i-])*r%mod;
h[i][]=h[i-][]*r%mod;
}
rep(i,,m+) {
ll t=g[i]*g[m+-i]%mod;
if (i&) p3=((p3-h[i][]*t)%mod+mod)%mod,p4=((p4-h[i][]*t)%mod+mod)%mod;
else p3=(p3+h[i][]*t)%mod,p4=(p4+h[i][]*t)%mod;
}
c=powmod(p4,mod-)*(mod-p3)%mod;
rep(i,,m+) h[i][]=(h[i][]+h[i][]*c)%mod;
rep(i,,m+) C[i]=h[i][];
ans=(calcn(m,C,n)*powmod(R,n)-c)%mod;
if (ans<) ans+=mod;
return ans;
}
}

拉格朗日插值法板子(dls)的更多相关文章

  1. Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法

    本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...

  2. 拉格朗日插值法——用Python进行数值计算

    插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关 ...

  3. CPP&MATLAB实现拉格朗日插值法

    开始学习MATLAB(R和Python先放一放...),老师推荐一本书,看完基础就是各种算法...首先是各种插值.先说拉格朗日插值法,这原理楼主完全不懂的,查的维基百科,好久才看懂.那里讲的很详细,这 ...

  4. codeforces 622F. The Sum of the k-th Powers 拉格朗日插值法

    题目链接 求sigma(i : 1 to n)i^k. 为了做这个题这两天真是补了不少数论, 之前连乘法逆元都不知道... 关于拉格朗日插值法, 我是看的这里http://www.guokr.com/ ...

  5. bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法

    4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status ...

  6. 集训DAYn——拉格朗日插值法

    看zzq大佬的博客,看到了这个看似很深奥的东西,实际很简单(反正比FFT简单,我是一个要被FFT整疯了的孩子) 拉格朗日插值法 是什么 可以找到一个多项式,其恰好在各个观测点取到观测到的值.这样的多项 ...

  7. 牛客网多校训练第一场 F - Sum of Maximum(容斥原理 + 拉格朗日插值法)

    链接: https://www.nowcoder.com/acm/contest/139/F 题意: 分析: 转载自:http://tokitsukaze.live/2018/07/19/2018ni ...

  8. 【BZOJ3453】XLkxc [拉格朗日插值法]

    XLkxc Time Limit: 20 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 给定 k,a,n,d,p f(i ...

  9. Educational Codeforces Round 7 F. The Sum of the k-th Powers 拉格朗日插值法

    F. The Sum of the k-th Powers 题目连接: http://www.codeforces.com/contest/622/problem/F Description Ther ...

随机推荐

  1. js判断设备,跳转app应用、android市场或者AppStore

    js移动设备判断方法大全 <!DOCTYPE html> <html> <head> <meta charset="UTF-8" > ...

  2. Codeforces 1194A. Remove a Progression

    传送门 再一次题目看错浪费一小时...退役算了 自己手玩一下发现划掉的都是奇数,最后所有奇数都划掉了,证明也挺显然的 所以直接输出 $2m$ 即可 #include<iostream> # ...

  3. maven引用本地jar,并打包部署

    由于项目需要的一个jar在maven仓库里没有,又不想把jar手动导入仓库.然而百度的几个处理方式都是一样的方法,我却没有一个成功的.于是就请教了大神,大神也是各种测试,终于成功实现了,实现如下: 新 ...

  4. 客户端相关知识学习(五)之什么是webView

    webview是什么?作用是什么?和浏览器有什么关系? Android系统中内置了一款高性能 webkit 内核浏览器,在 SDK 中封装为一个叫做 WebView 组件也就是说WebView是一个基 ...

  5. namenode datanode理解

        HDFS是以NameNode和DataNode管理者和工作者模式运行的.          NameNode管理着整个HDFS文件系统的元数据.从架构设计上看,元数据大致分成两个层次:Name ...

  6. Zookeeper启动失败,报错 can not open chanel to 2

    zookeeper 3.4.8 安装在 7 台不同的虚拟机上,配置文件如下: tickTime= initLimit= syncLimit= dataDir=/var/zookeeper client ...

  7. react typescript FunctionComponent antd crud

    这个界面跟之前VUE做的一样.并无任何不同之处,只是用react重复实现了一遍. import React, { useState, useEffect } from 'react'; import ...

  8. 架构师成长之路5.4-Saltstack配置管理(LAMP架构案例)

    点击架构师成长之路 架构师成长之路5.4-Saltstack配置管理(LAMP架构案例) 配置管理工具: Pupper:1. 采用ruby编程语言:2. 安装环境相对较复杂:3.不支持远程执行,需要F ...

  9. oracle删除临时表空间一直处于等待状态

    现象: 新建一个临时表空间mytemp 然后将其改为默认临时表空间后,执行一条带order by的查询语句,查询出结构后, 修改默认临时表空间为原来的temp,然后执行 drop tablespace ...

  10. fwrite()

    fwrite(),最好写strlen()个字节,否则可能有乱码