题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=2213

https://loj.ac/problem/2161

题解

做一道简单题来放松一下。

不过这道题细节挺多的,可以作为一道练细节的好题。

直接钦定出现最多的字母和出现最少的字母,这样把原序列转化成 \(\pm1\) 的序列做最大字段和就可以了。

我们可以在扫这个序列的时候用一个数组 \(s[i][j]\) 表示以 \(i\) 为出现最少的,\(j\) 为出现最多的的最大子段和,直接更新维护就可以了。

但是这样会有一个问题,如果有一段区间 \(i\) 这个字符根本没有出现,会被 \(s\) 的维护算作 \(0\) 次从而使答案错误。我们只需要在更新的时候记录一下当前 \(s[i][j]\) 的当前一个子段是否出现了 \(i\),未出现就不更新答案。

但是这样还会有一个问题。如果 \(i\) 出现在答案子串的第一位,那么就不会被统计到,而会一直认为没有出现。(因为最大子段和的贪心策略直接把它跟扔掉了)

所幸就只有这一种情况会出错,可以特判一下。我比较懒就直接把整个串倒着继续做了一遍。


下面是代码。由于字符串的每一位只会影响到 \(s\) 数组的 \(26-1+26-1\) 个元素,因此时间复杂度为 \(O(50n)\)。(这个东西不能叫复杂度吧,里面写了常数啊)

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b , 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b , 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I>
inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const int N = 1000000 + 7; int n;
int ss[26][26], sp[26][26], gg[26];
char s[N]; inline void work() {
int ans = 0, bg = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < 26; ++j) if (s[i] - 'a' != j) {
if (ss[s[i] - 'a'][j]) ss[s[i] - 'a'][j]--, sp[s[i] - 'a'][j] = 1;
else ss[s[i] - 'a'][j] = 0, sp[s[i] - 'a'][j] = 0;
sp[s[i] - 'a'][j] && smax(ans, ss[s[i] - 'a'][j]);
}
for (int j = 0; j < 26; ++j) if (s[i] - 'a' != j) ++ss[j][s[i] - 'a'], sp[j][s[i] - 'a'] && smax(ans, ss[j][s[i] - 'a']);
}
memset(ss, 0, sizeof(ss));
memset(sp, 0, sizeof(sp));
for (int i = n; i; --i) {
for (int j = 0; j < 26; ++j) if (s[i] - 'a' != j) {
if (ss[s[i] - 'a'][j]) ss[s[i] - 'a'][j]--, sp[s[i] - 'a'][j] = 1;
else ss[s[i] - 'a'][j] = 0, sp[s[i] - 'a'][j] = 0;
sp[s[i] - 'a'][j] && smax(ans, ss[s[i] - 'a'][j]);
}
for (int j = 0; j < 26; ++j) if (s[i] - 'a' != j) ++ss[j][s[i] - 'a'], sp[j][s[i] - 'a'] && smax(ans, ss[j][s[i] - 'a']);
printf("%d\n", ans);
} inline void init() {
read(n);
scanf("%s", s + 1);
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

BZOJ2213 & LOJ2161 「POI2011 R2 Day1」Difference 最大子段和的更多相关文章

  1. 「POI2011 R2 Day2」Tree Rotations【线段树合并】

    题目链接 [BZOJ] [洛谷] [LOJ] 题解 由于是前序遍历,那么讨论一棵树上的逆序对的情况. 两个节点都在左子树上 两个节点都在右子树上 两个节点分别在不同的子树上. 前两种情况其实也可以归结 ...

  2. 【LOJ】#3032. 「JOISC 2019 Day1」馕

    LOJ#3032. 「JOISC 2019 Day1」馕 处理出每个人把馕切成N段,每一段快乐度相同,我们选择第一个排在最前的人分给他的第一段,然后再在未选取的的人中选一个第二个排在最前的切一下,并把 ...

  3. 【LOJ】#3031. 「JOISC 2019 Day1」聚会

    LOJ#3031. 「JOISC 2019 Day1」聚会 听说随机可过? 我想了很久想了一个不会被卡的做法,建出前\(u - 1\)个点的虚树,然后找第\(u\)个点的插入位置,就是每次找一条最长链 ...

  4. 【LOJ】#3030. 「JOISC 2019 Day1」考试

    LOJ#3030. 「JOISC 2019 Day1」考试 看起来求一个奇怪图形(两条和坐标轴平行的线被切掉了一个角)内包括的点个数 too naive! 首先熟练的转化求不被这个图形包含的个数 -- ...

  5. 「JOISC 2014 Day1」巴士走读

    「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...

  6. 「BalkanOI 2018 Day1」Election

    「BalkanOI 2018 Day1」Election 记C为1,T为-1,\(sum[i]\)为\(i\)点的前缀和. 对于询问\([l,r]\),分两步计算答案. 要求所有点的\(sum[i]- ...

  7. 「BalkanOI 2018 Day1」Minmaxtree

    「BalkanOI 2018 Day1」Minmaxtree 每个点都有一个最大和最小权值的限制. 然后每一个权值的限制都必须要取到. 每个点显然可以直接让他取到最大或最小权值. 可以想到每个点匹配一 ...

  8. 「JOISC 2014 Day1」 历史研究

    「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...

  9. LOJ#2632. 「BalticOI 2011 Day1」打开灯泡 Switch the Lamp On

    题目描述 译自 BalticOI 2011 Day1 T3「Switch the Lamp On」有一种正方形的电路元件,在它的两组相对顶点中,有一组会用导线连接起来,另一组则不会.有 N×M 个这样 ...

随机推荐

  1. JavaScript 常用的技术(陆续更新)

    截取字符串(指定长度) var str = "abc-110001"; //str.substring(起始位置(0开始),截取的长度) str.substring(0,4); / ...

  2. UE4开发PSVR游戏,使用RazorGPU进行调试的方法

    打开Project Launcher,如果没有需要的Devkit平台目标,就点下方的Device Manager,右键Claim 相应的目标.如果已经出现在Project Launcher中,点击上方 ...

  3. CSS动画之旋转魔方轮播

    很久没有回头来复习CSS方面的知识了, 正好又到了月底写文章的deadline......所以这次选择了详细巩固一下CSS3动画有关的知识点,因为之前只是用过一些属性并没有深究细节. 在我自己写完这篇 ...

  4. PHP PSR标准规范

    PHP PSR标准规范,PHP开发者都需要遵循规范. 官网(英文版本): https://www.php-fig.org 官网(中文版本): https://psr.phphub.org

  5. ProxyImpl 类

    package com.test.mvp.mvpdemo.mvp.v7.proxy; import com.test.mvp.mvpdemo.mvp.v7.basemvp.BasePresenter; ...

  6. python中生成器generator

    通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素 ...

  7. LintCode之合并排序数组II

    题目描述: 分析:题目的意思是把数组A和数组B合并到数组A中,且数组A有足够的空间容纳A和B的元素,合并后的数组依然是有序的. 我的代码: public class Solution { /* * @ ...

  8. linux ( CentOS 7)下Tengine(nginx)的安装与配置

    TengineTengine是由淘宝网发起的Web服务器项目.它在Nginx的基础上,针对大访问量网站的需求,添加了很多高级功能和特性.它的目的是打造一个高效.安全的Web平台. 使用root用户安装 ...

  9. codecs模块, decode、encode

    使用codecs模块,在Python中完成字符编码   字符的编码是按照某种规则在单字节字符和多字节字符之间进行转换的某种方法.从单字节到多字节叫做decoding,从多字节到单字节叫做encodin ...

  10. Log4j Threshold、Append

    报错ERROR日志单独存放 Threshold属性可以指定日志level Log4j根据日志信息的重要程度,分OFF.FATAL.ERROR.WARN.INFO.DEBUG.ALL 比如我们指定某个a ...