题目描述:

求序列A,B的公共子序列个数;

基本思路:

想到了dp,选的状态也对,但是就是就是写不出状态转移方程,然后他们都出了,到最后我还是没出,很难受,然后主要是没有仔细考虑dp【i】【j】,dp【i】【j-1】,dp【i-1】【j】,dp【i-1】【j-1】在A【

i】和B【i】在相同和不相同是的数量关系,我为啥就没想到要减呢,只想着怎么把他们加起来,着实智障;

定义状态dp【i】【j】为序列A扫到i,序列B扫到B时候的公共子序列个数,状态转移方程如下:

其实这个状态转移方程也没那么好证明,但仔细想一想,如果相等的话,不过就是dp【i】【j-1】和dp【i-1】【j】的公共部分和a【i】和b【j】这一对组合,这公共部分在dp【i】【j-1】和dp【i-1】【j】中必定是重合的,然后就是还有a【i】和b【j】这一对组合单独着,然后状态转移方程就是上面第一个状态转移方程这样,然后第二个也是一样的考虑方式;(说实话把他放到简单dp里,我还是很羞愧的);

代码如下:

#include<iostream>
#include<sstream>
#include<iomanip>
#include<algorithm>
#include<string>
#include<queue>
#include<vector>
#include<stack>
#include<list>
#include<map>
#include<set>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring> using namespace std; typedef long long ll;
typedef long double ld;
#define rep(a,b,c) for(int (a)=(b);(a)<=(c);(a)++)
#define drep(a,b,c) for(int (a)=(b);(a)=>(c);(a)--)
const int inf = 0x3f3f3f3f;
const double eps = 1e-;
const int mod = ; const int maxn = +;
ll dp[maxn][maxn];
int s[maxn],t[maxn]; int main()
{
int n,m;
while(scanf("%d%d",&n,&m)==)
{
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++) scanf("%d",&s[i]);
for(int j=;j<=m;j++) scanf("%d",&t[j]);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
if(s[i]==t[j])
{
dp[i][j]=(dp[i-][j]+dp[i][j-]++mod)%mod;
}
else
{
dp[i][j]=(dp[i][j-]+dp[i-][j]-dp[i-][j-]+mod)%mod;
}
}
}
printf("%I64d\n",dp[n][m]);
}
return ;
}

hdu 5791 思维dp的更多相关文章

  1. HDU 5791 Two DP

    Two   Problem Description   Alice gets two sequences A and B. A easy problem comes. How many pair of ...

  2. hdu 5791 (DP) Two

    hdu 5791 Two Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  3. hdu 3709 数字dp(小思)

    http://acm.hdu.edu.cn/showproblem.php?pid=3709 Problem Description A balanced number is a non-negati ...

  4. hdu 4123 树形DP+RMQ

    http://acm.hdu.edu.cn/showproblem.php? pid=4123 Problem Description Bob wants to hold a race to enco ...

  5. hdu 4507 数位dp(求和,求平方和)

    http://acm.hdu.edu.cn/showproblem.php?pid=4507 Problem Description 单身! 依旧单身! 吉哥依旧单身! DS级码农吉哥依旧单身! 所以 ...

  6. hdu 4352 数位dp + 状态压缩

    XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  7. hdu 4283 区间dp

    You Are the One Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  8. HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化

    HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...

  9. HDU 2588 思维 容斥

    求满足$1<=X<=N ,(X,N)>=M$的个数,其中$N, M (2<=N<=1000000000, 1<=M<=N)$. 首先,假定$(x, n)=m$ ...

随机推荐

  1. 403 ,502 到正确的nginx 配置

    配置完一定要reboot ,之前我一直用的 ./nginx -s reload ,这次我不知道为啥不行... 再没有reboot 之前一直在用的旧的配置.所以一直在报403forbbdin. rebo ...

  2. Codeforces 1188D Make Equal DP

    题意:给你个序列,你可以给某个数加上2的幂次,问最少多少次可以让所有的数相等. 思路(官方题解):我们先给序列排序,假设bit(c)为c的二进制数中1的个数,假设所有的数最后都成为了x, 显然x &g ...

  3. 【转载】将本地图片转成base64

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. pod的状态分析

    Pod状态 状态 描述 Running 该 Pod 已经绑定到了一个节点上,Pod 中所有的容器都已被创建.至少有一个容器正在运行,或者正处于启动或重启状态. Pending Pod 已被 Kuber ...

  5. webpack第一节(2)

    安装webpack在文件夹中 安装完成如图所示 牛刀小试 在webpack-test根目录下新建一个hello.js (不新建在node-modules文件夹下面的目的是,该文件夹是webpack的依 ...

  6. QML学习笔记(八)— QML实现列表侧滑覆盖按钮

    QML实现列表右边滑动删除按钮,并覆盖原有的操作按钮,点击可实现删除当前项 本文链接:QML实现列表侧滑覆盖按钮 作者:狐狸家的鱼 GitHub:八至 列表实现在另一篇博客已经提及,列表可选中.拖拽. ...

  7. 过滤字符串中的html标签

    C#中,我们有时需要过滤掉字符串中的部分html标签,以下是一些简单的html标签过滤方法,使用的主要方式是正则表达式 public static string ClearHtml(string ht ...

  8. 【c#技术】一篇文章搞掂:常见C#技术问题

    1.事件作为参数传递 public class Para { // 定义一种委托(事件类型),可以在此定义这个事件的返回值和参数 public delegate object GetDataMetho ...

  9. android:layout_gravity和android:gravity的区别 (转)

    转:http://blog.csdn.net/shakespeare001/article/details/7843460 1.首先来看看android:layout_gravity和android: ...

  10. mysql存储过程、函数、触发器、

    当数据库版本不允许直接使用存储过程.函数的语法时用delimiter // 将结束符改成//用完之后再写delimiter;将结束符改回来即可,调用过程.函数用call+其名字即可返回结果 delim ...