stl+数论——1247D
其实也不算很难想,每个元素质因子分解后的p^c的p和c用pair的形式存在每个元素vector里
要去前面找一个数使得所有指数相加是k的倍数,那么把vector里的所有c 模 k,然后去找前面互补的数的个数,可以用map存下前面元素模完k之后的vector,然后答案加一加就行
注意:如果a本身就是一个k次数,即其所有质因子的指数都是k的倍数,那么这种情况要单独处理一下
套了三个stl,一开始不敢写。。。
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define N 100005
ll n,k,a[N],x,cnt[N]; int vis[N],prime[N],m;
void init(){
for(int i=;i<=;i++){
if(!vis[i]){
prime[++m]=i;
}
for(int j=;j<=m;j++){
if(prime[j]*i>)break;
vis[prime[j]*i]=;
if(i%prime[j]==)break;
}
}
} ll p[N],c[N],mm;
void divide(ll x){
mm=;
for(int i=;i<=m;i++){
if(prime[i]>x)break;
if(x%prime[i]!=)continue;
p[++mm]=prime[i];c[mm]=;
while(x%prime[i]==)
x/=prime[i],c[mm]++;
}
if(x>)
c[++m]=,p[mm]=x;
} map<vector<pair<int,int> >,int>mp;
vector<pair<int,int> >v[N]; int main(){
init(); cin>>n>>k;
ll ans=,tot=; for(int i=;i<=n;i++){
cin>>a[i];
divide(a[i]);
for(int j=;j<=mm;j++){
c[j]%=k;
if(c[j]!=)
v[i].push_back(make_pair(p[j],c[j]));
} if(v[i].size()==){
ans+=tot;
tot++;
continue;
} vector<pair<int,int> >tmp;
for(int j=;j<v[i].size();j++){
pair<int,int> p;
p.first=v[i][j].first;
p.second=k-v[i][j].second;
tmp.push_back(p);
}
ans+=mp[tmp]; mp[v[i]]++;
} cout<<ans<<'\n';
}
stl+数论——1247D的更多相关文章
- 51nod 1010 stl/数论/二分
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1010 1010 只包含因子2 3 5 基准时间限制:1 秒 空间限制:1 ...
- 数据结构(DataStructure)与算法(Algorithm)、STL应用
catalogue . 引论 . 数据结构的概念 . 逻辑结构实例 2.1 堆栈 2.2 队列 2.3 树形结构 二叉树 . 物理结构实例 3.1 链表 单向线性链表 单向循环链表 双向线性链表 双向 ...
- 【10.11校内测试】【优先队列(反悔贪心)】【莫队】【stl的应用??离线处理+二分】
上次做过类似的题,原来这道还要简单些?? 上次那道题是每天可以同时买进卖出,所以用两个优先队列,一个存买进,一个存卖出(供反悔的队列). 这道题实际上用一个就够了???但是不好理解!! 所以我还是用了 ...
- QBXT Day 4 数学,数论
今天讲一讲数论吧(虽然清明讲过了) 进制转换 我们来看10这个数怎么转换成k进制 因为10=2^3+2^1,所以10就是1010 三进制也同理10=3^2+3^0,所以就是101 我们对于一个10进制 ...
- BZOJ5302 [HAOI2018]奇怪的背包 【数论 + dp】
题目 小 CC 非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数 PP ,当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对 PP 取模后的结果. 现在小 CC 有 nn 种体积不同 ...
- Codeforces 979D (STL set)(不用Trie简单AC)
题面: 传送门 题目大意: 给定一个空集合,有两种操作: 一种是往集合中插入一个元素x,一种是给三个数x,k,s,问集合中是否存在v,使得gcd(x,v)%k==0,且x+v<=s若存在多个满足 ...
- Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...
- 详细解说 STL 排序(Sort)
0 前言: STL,为什么你必须掌握 对于程序员来说,数据结构是必修的一门课.从查找到排序,从链表到二叉树,几乎所有的算法和原理都需要理解,理解不了也要死记硬背下来.幸运的是这些理论都已经比较成熟,算 ...
- STL标准模板库(简介)
标准模板库(STL,Standard Template Library)是C++标准库的重要组成部分,包含了诸多在计算机科学领域里所常见的基本数据结构和基本算法,为广大C++程序员提供了一个可扩展的应 ...
随机推荐
- HashMap常见面试题
1.HashMap底层是通过什么来实现的? 在JDK1.7中是通过数组+链表来实现的: 在JDK1.8中是通过数组+链表+红黑树来实现的 2.HashMap在JDK1.8中为什么使用红黑树? 为了弥补 ...
- SQL语句计算经纬度距离
二: SQL语句计算经纬度距离 SELECT id, ( 6371* acos( cos( radians(37) ) * cos( radians( lat ) ) * cos( radians( ...
- POJ 1655 Balancing Act (树状dp入门)
Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any nod ...
- [NOIP模拟测试37]反思+题解
一定要分析清楚复杂度再打!!!窝再也不要花2h20min用暴力对拍暴力啦!!! 雨露均沾(滑稽),尽量避免孤注一掷.先把暴力分拿全再回来刚正解. 即使剩下的时间不多了也优先考虑认真读题+打暴力而非乱搞 ...
- 【c#技术】一篇文章搞掂:水晶报表
更新数据源 应该先从[数据库]——[数据库专家]——[刷新]——[数据库]——[验证数据库] 必须先刷新,不然验证数据库无效 XP下,打开水晶报表提示无法创建目录或文件,删除临时目录Temp中文件即可 ...
- 学号 20175223 《Java程序设计》第10周学习总结
目录 教材学习内容总结 代码调试中的问题和解决过程 1. XAMPP无法启用 MySQL 程序. 2. Ubuntu 无法下载或更新. [代码托管] 学习进度条 参考资料 目录 教材学习内容总结 第十 ...
- Python基础-main
Python基础-_main_ 写在前面 如非特别说明,下文均基于Python3 一.__main__的官方解释 参考 _main_ -- Top-level script environment ' ...
- flask编程规范
参考:http://dormousehole.readthedocs.org/en/latest/styleguide.html Flask遵循的是Pocoo的编程规范,Pocoo遵守PEP8的规 ...
- python作业/练习/实战:生成随机密码
作业要求1.写一个函数,函数的功能是生成一批密码,存到文件里面 def gen_password(num): #num代表生成多少条密码2.密码复杂度要求 1)长度在,8-16位之间 2)密码必须包括 ...
- mysql 5.7.20 从frm文件中得到建表语句 (使用 mysql-utilities)
系统环境 centos 7.2 mysql社区版 5.7.20 mysql-utilities 根据官网的说法,截止到2018年5月30日,实用工具的一些功能在Shell的路线图中,鼓励用户迁 ...