POJ 2778 DNA Sequence

Problem : 给m个只含有(A,G,C,T)的模式串(m <= 10, len <=10), 询问所有长度为n的只含有(A,G,C,T)的串中有多少个不含有模式串的串。(n<=2000000000)

Solution :首先对所有模式串建立AC自动机。然后dp[i][j]表示长度为i,走到AC自动机的节点j这样的字符串满足条件的个数有多少,用AC自动机的边写出状态转移方程然后用矩阵快速幂加速运算。

#include <iostream>
#include <string>
#include <queue> using namespace std; const int N = 208;
const int mo = 100000; int id[128]; struct Matrix
{
int n;
int a[N][N];
Matrix(int n_, int p)
{
n = n_;
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
{
a[i][j] = 0;
if (i == j) a[i][j] = p;
}
}
friend Matrix operator *(Matrix A, Matrix B)
{
Matrix C(A.n, 0);
for (int i = 0; i < A.n; ++i)
for (int j = 0; j < A.n; ++j)
for (int k = 0; k < A.n; k++)
C.a[i][j] = (C.a[i][j] + 1ll * A.a[i][k] * B.a[k][j] % mo) % mo;
return C;
}
void print()
{
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < n; ++j) cout << a[i][j] << " ";
cout << endl;
}
}
}; struct AC_Automan
{
int next[N][4];
int fail[N];
int cnt[N];
int root, tot; int newnode()
{
for (int i = 0; i <= 3; ++i) next[tot][i] = -1;
fail[tot] = cnt[tot] = -1;
return tot++;
}
void clear()
{
tot = 0;
root = newnode();
}
void insert(const string &s)
{
int p = root;
for (int i = 0, len = s.length(); i < len; ++i)
{
if (next[p][id[s[i]]] == -1) next[p][id[s[i]]] = newnode();
p = next[p][id[s[i]]];
}
cnt[p] = 1;
}
void build()
{
queue <int> Q;
Q.push(root);
while (!Q.empty())
{
int p = Q.front(); Q.pop();
for (int i = 0; i < 4; ++i)
{
if (~next[p][i])
{
if (p == root) fail[next[p][i]] = root;
else fail[next[p][i]] = next[fail[p]][i];
Q.push(next[p][i]);
}
else
{
if (p == root) next[p][i] = root;
else next[p][i] = next[fail[p]][i];
}
}
}
}
Matrix power(Matrix A, int y)
{
Matrix B(tot, 1);
while (y)
{
if (y & 1) B = B * A;
A = A * A;
y >>= 1;
}
return B;
} void solve(int num)
{
Matrix A(tot, 0);
for (int i = 0; i <= tot; ++i)
{
for (int j = 0; j < 4; ++j)
{
int flag = 1;
for (int temp = next[i][j]; temp != root; temp = fail[temp])
{
if (~cnt[temp]) flag = 0;
}
A.a[i][next[i][j]] += flag;
}
}
A = power(A, num);
int ans = 0;
for (int i = 0; i < tot; ++i) ans = (ans + A.a[0][i]) % mo;
cout << ans << endl;
}
}ac; int main()
{
cin.sync_with_stdio(0);
id['A'] = 0; id['G'] = 1; id['C'] = 2; id['T'] = 3;
int m, n;
while (cin >> m >> n)
{
ac.clear();
for (int i = 1; i <= m; ++i)
{
string s; cin >> s;
ac.insert(s);
}
ac.build();
ac.solve(n);
}
}

POJ 2778 (AC自动机+矩阵乘法)的更多相关文章

  1. DNA Sequence POJ - 2778 AC 自动机 矩阵乘法

    定义重载运算的时候一定要将矩阵初始化,因为这个调了一上午...... Code: #include<cstdio> #include<algorithm> #include&l ...

  2. poj 2778 AC自动机+矩阵快速幂

    题目链接:https://vjudge.net/problem/POJ-2778 题意:输入n和m表示n个病毒,和一个长为m的字符串,里面只可以有'A','C','G','T' 这四个字符,现在问这个 ...

  3. DNA Sequence POJ - 2778 AC自动机 && 矩阵快速幂

    It's well known that DNA Sequence is a sequence only contains A, C, T and G, and it's very useful to ...

  4. 【bzoj1444】[Jsoi2009]有趣的游戏 AC自动机+矩阵乘法

    题目描述 输入 注意 是0<=P 输出 样例输入 样例输出 题解 AC自动机+矩阵乘法 先将所有字符串放到AC自动机中,求出Trie图. 然后构建邻接矩阵:如果x不是某个字符串的末位置,则x连向 ...

  5. POJ 2778 DNA Sequence (AC自动机,矩阵乘法)

    题意:给定n个不能出现的模式串,给定一个长度m,要求长度为m的合法串有多少种. 思路:用AC自动机,利用AC自动机上的节点做矩阵乘法. #include<iostream> #includ ...

  6. DNA Sequence - POJ 2778(AC自动机+矩阵乘法)

    题目大意:DNA序列是有 ATGC 组成的,现在知道一些动物的遗传片段有害的,那么如果给出这些有害的片段,能否求出来所有长度为 N 的基因中有多少是不包含这些有害片段的.   分析:也是断断续续做了一 ...

  7. [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】

    题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...

  8. 【POJ2778】AC自动机+矩阵乘法

    DNA Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14758 Accepted: 5716 Descrip ...

  9. bzoj 2553: [BeiJing2011]禁忌 AC自动机+矩阵乘法

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=2553 题解: 利用AC自动机的dp求出所有的转移 然后将所有的转移储存到矩阵中,进行矩阵 ...

随机推荐

  1. [书目20150303]软件工程的本质:运用SEMAT内核

    译者序Robert Martin作序Bertrand Meyer作序Richard Soley作序前言致谢第一部分   内核思想解释第1章   简要介绍如何使用内核1.1   为什么开发优秀软件具有很 ...

  2. android开发学习 ------- volley网络请求的实例

    在  http://www.sojson.com/httpRequest/  上对http进行访问,将此访问在android中的应用 ********************************* ...

  3. 为OS X开发者准备的15个超棒应用

    几乎所有的开发人员在他们日常的开发工作中都有他们自己不可缺少的工具或实用程序集. 这些工具中的每一个都提供了特定的功能,大多数开发者都已经将他们集成到了其工作流程中. 使用这些工具或实用程序不单单只是 ...

  4. poj3050 Hopscotch

    思路: 水题. 实现: #include <iostream> #include <cstdio> #include <set> using namespace s ...

  5. [BZOJ1088][SCOI2005]扫雷Mine DP

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1088 记录下每一个格子对应左边格子放的雷的情况,然后dp转移就好了. #include&l ...

  6. InChatter系统之服务器开发(一)

    服务器端是整个消息系统的中枢,类似与人类的大脑.没有他,根本无法实现客户端之间的交流,为什么呢?这也涉及到我们的系统涉及,在服务器端,每个客户端的标识数据都会在服务器端进行保存,在这种情况下,当某一个 ...

  7. 部分cocoscreator左右移动代码

    cc.Class({extends: cc.Component, properties: { // 主角跳跃高度 jumpHeight: 0, // 主角跳跃持续时间 jumpDuration: 0, ...

  8. faster rcnn一些博客

    这个是对faster 问题的一个总结 http://blog.csdn.net/u010402786/article/details/72675831?locationNum=11&fps=1 ...

  9. JavaSE-12 面向对象程序设计的几条基础原则

    摘取代码中变化的行为,形成接口 在设计基类的时候,如果该类某个成员方法在子类中的实现变化差别比较大(一部分子类实现该方法是相同的),作为基类有两个问题:一是该方法不再通用:二是子类如果重写该方法,存在 ...

  10. WebDriver的多浏览器测试的浏览器驱动程序

    1.在使用IE浏览器进行WebDriver自动化测试之前,需要从http://docs.seleniumhq.org/download/网站上下载一个WebDriver链接IE浏览器的驱动程序,文件名 ...