Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
For example, consider the tree: 

Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two.

For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number.

Input

The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

Output

For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

Sample Input

1
7
2 6
1 2
1 4
4 5
3 7
3 1

Sample Output

1 2
树形DP,注意考虑n-sum[u]这个搜索方向的联通点集
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 200099
#define L 31
#define INF 1000000009
#define eps 0.00000001
#define sf(a) scanf("%d",&a)
/*
dp[i] 记录i点除去偶的最大点集点数
sum[i] 记录所有子节点数目
*/
struct edge
{
int to, next;
}E[MAXN];
int sum[MAXN], dp[MAXN], head[MAXN];
int t, n, cnt;
void addedge(int f,int t)
{
E[cnt].to = t;
E[cnt].next = head[f];
head[f] = cnt++;
}
void init()
{
memset(sum, , sizeof(sum));
memset(dp, , sizeof(dp));
memset(head, -, sizeof(head));
cnt = ;
}
void dfs(int u, int pre)
{
sum[u] = dp[u] = ;
for (int i = head[u]; i != -; i = E[i].next)
{
int v = E[i].to;
if (v == pre) continue;
dfs(v, u);
sum[u] += sum[v];
dp[u] = max(dp[u], sum[v]);
}
dp[u] = max(dp[u], n - sum[u]);
}
int main()
{
sf(t);
while (t--)
{
init();
sf(n);
for (int i = ; i < n - ; i++)
{
int a, b;
sf(a), sf(b);
addedge(a, b);
addedge(b, a);
}
dfs(, -);
int ans = INF, k = -;
for (int i = ; i <= n; i++)
{
if (dp[i] < ans)
{
k = i, ans = dp[i];
}
}
printf("%d %d\n", k, ans);
}
}

I - Balancing Act POJ - 1655的更多相关文章

  1. Balancing Act POJ - 1655 (树的重心)

    Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the t ...

  2. POJ.1655 Balancing Act POJ.3107 Godfather(树的重心)

    关于树的重心:百度百科 有关博客:http://blog.csdn.net/acdreamers/article/details/16905653 1.Balancing Act To POJ.165 ...

  3. POJ 1655 Balancing Act&&POJ 3107 Godfather(树的重心)

    树的重心的定义是: 一个点的所有子树中节点数最大的子树节点数最小. 这句话可能说起来比较绕,但是其实想想他的字面意思也就是找到最平衡的那个点. POJ 1655 题目大意: 直接给你一棵树,让你求树的 ...

  4. POJ 1655 Balancing Act && POJ 3107 Godfather

    题目大意: 根据题目的图很好理解意思,就是记录每一个点的balance,例如 i 的balance就是把 i 从这棵树中除去后得到的森林中含有结点数最多 的子树中的节点个数,然后找到所有节点中对应的b ...

  5. poj 1655 Balancing Act(找树的重心)

    Balancing Act POJ - 1655 题意:给定一棵树,求树的重心的编号以及重心删除后得到的最大子树的节点个数size,如果size相同就选取编号最小的. /* 找树的重心可以用树形dp或 ...

  6. POJ 1655 Balancing Act【树的重心】

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14251   Accepted: 6027 De ...

  7. POJ 1655.Balancing Act 树形dp 树的重心

    Balancing Act Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14550   Accepted: 6173 De ...

  8. poj 1655 Balancing Act 求树的重心【树形dp】

    poj 1655 Balancing Act 题意:求树的重心且编号数最小 一棵树的重心是指一个结点u,去掉它后剩下的子树结点数最少. (图片来源: PatrickZhou 感谢博主) 看上面的图就好 ...

  9. POJ 1655 Balancing Act 树的重心

    Balancing Act   Description Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. ...

随机推荐

  1. jsp中提示修改成功

    修改成功提示 servert包 request.setAttribute("success", "修改失败"); 效果而 function f(){ var n ...

  2. SQL表与表连接关系

    一.SQL连接方式 left join :左连接,返回左表中所有的记录以及右表中连接字段相等的记录. right join :右连接,返回右表中所有的记录以及左表中连接字段相等的记录. inner j ...

  3. Javascript数据结构之栈

    作者原文:http://hawkzz.com/blog/blog/1515054561771 定义 栈是一种特殊的列表,栈内的元素只能通过列表的一端访问,这一端称为栈顶.栈被称为一种先入后出的数据结构 ...

  4. 解决重置PostgreSQL 9.6密码的问题

    一.PostgreSql9.6重置密码的方法: 1.打开windows服务管理器,找到“postgresql-x64-9.6”服务,停止服务. 2.找到PostgreSQL9.6的安装目录(以我的E盘 ...

  5. 谈谈如何学习Linux操作系统

     献给初学者:为了能把这篇不错的文章分享给大家.所以请允许我暂时用原创的形式展现给大家. @hcy 更多资源:http://blog.sina.com.cn/iihcy 一. 选择适合自己的linux ...

  6. 浅谈CSS中的定位知识

    1,静态定位(static) 表示按照正常定位方案,元素盒按照在文档流中出现的顺序依次格式化: 2,相对定位(relative) 将移动元素盒,但是它在文档流中的原始空间会保留下来: 相对定位元素有如 ...

  7. Android嵌入式安卓触摸屏|4418开发板平台

    核心板参数 尺寸:50mm*60mm 高度:核心板连接器为1.5mm 4418 CPU:ARM Cortex-A9 四核 S5P4418处理器 1.4GHz 6818 CPU:ARM Cortex-A ...

  8. WPF学习- 新建项目后自定义Main()[Type 'App' already defines a member called 'Main' with the same parameter types]

    问题点: 在App.xaml.cs中自己添加Main方法,编译会出现如下报错: 错误 CS0111 类型“App”已定义了一个名为“Main”的具有相同参数类型的成员  错误 Type 'App' a ...

  9. CAD设置背景图片(com接口)

    把图片作为背景图片可见但是不能编辑操作. 主要用到函数说明: _DMxDrawX::DrawImageToBackground 绘光栅图到背景.详细说明如下: 参数 说明 BSTR sFileName ...

  10. Android获取屏幕的大小与密度的代码

    Android项目开发中很多时候需要获取手机屏幕的宽高以及屏幕密度来进行动态布局,这里总结了三种获取屏幕大小和屏幕密度的方法 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...