显然dp[i][j]=ps[i-1][j-1]-sigma(dp[k<i][l<j],a[i][j]=a[k][l])

考虑对于每一种颜色都开一颗区间线段树,但是空间不够。

所以我们可以动态开节点的权值线段树即可。

因为ij写反了调了30min。

然后发现空间的问题我们可以分治啊,按照纵坐标分治,然后处理左半边对右半边的影响即可。

然后CDQ分治即可,空间是O(nm)的,时间复杂度是O(nmlogm)的。

复杂度怎么算?主定理套用即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define md 1000000007
int sum[6000001],ls[6000001],rs[6000001],tot=0;
struct Dynamic_Segment_Tree{
int L,R,rt,X,C;
void init(){rt=0;}
int query(int x,int l,int r)
{
if (l>r) return 0;
if (!x) return 0;
int mid=l+r>>1;
if (L<=l&&r<=R) return sum[x];
if (R<=mid) return query(ls[x],l,mid);
else if (L>mid) return query(rs[x],mid+1,r);
else return (query(ls[x],l,mid)+query(rs[x],mid+1,r))%md;
}
void update(int x)
{
sum[x]=(sum[ls[x]]+sum[rs[x]])%md;
}
void modify(int &x,int l,int r)
{
if (!x) x=++tot;
int mid=l+r>>1;
if (l==r)
{
(sum[x]+=C)%=md;
return ;
}
if (X<=mid) modify(ls[x],l,mid);
else modify(rs[x],mid+1,r);
update(x);
}
}T[562501];
int dp[751][751],prs[751][751],r,c,k,a[751][751];
int main()
{
scanf("%d%d%d",&r,&c,&k);
F(i,1,r) F(j,1,c) scanf("%d",&a[i][j]);
F(i,1,k) T[i].init();
dp[1][1]=1;
F(i,1,r)
{
F(j,1,c)
{
(dp[i][j]+=prs[i-1][j-1])%=md;
T[a[i][j]].L=1;T[a[i][j]].R=j-1;
if (j>=2) (dp[i][j]=dp[i][j]-T[a[i][j]].query(T[a[i][j]].rt,1,c)+md)%=md;
prs[i][j]=(((prs[i][j-1]+prs[i-1][j])%md+dp[i][j])%md-prs[i-1][j-1]+md)%md;
}
F(j,1,c)
{
T[a[i][j]].X=j;T[a[i][j]].C=dp[i][j];
T[a[i][j]].modify(T[a[i][j]].rt,1,c);
}
}
printf("%d\n",dp[r][c]);
}

CDQ分治

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define md 1000000007
int a[751][751],n,m,k,sum[1000005],dp[751][751],ps[751];
void CDQ(int l,int r)
{
if (l==r) return;
int mid=l+r>>1;
CDQ(l,mid);
F(i,1,n-1)
{
F(j,l,mid)
{
(sum[a[i][j]]+=dp[i][j])%=md;
(ps[i]+=dp[i][j])%=md;
}
(ps[i]+=ps[i-1])%=md;
F(j,mid+1,r)
{
(dp[i+1][j]+=ps[i])%=md;
dp[i+1][j]=(dp[i+1][j]-sum[a[i+1][j]]+md)%md;
}
}
F(i,1,n)
{
ps[i]=0;
F(j,l,mid) sum[a[i][j]]=0;
}
CDQ(mid+1,r);
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
F(i,1,n) F(j,1,m) scanf("%d",&a[i][j]);
dp[1][1]=1;
CDQ(1,n);
printf("%d\n",dp[n][m]);
}

  

BZOJ 3939 [Usaco2015 Feb]Cow Hopscotch ——线段树 CDQ分治的更多相关文章

  1. 【BZOJ3939】[Usaco2015 Feb]Cow Hopscotch 动态规划+线段树

    [BZOJ3939][Usaco2015 Feb]Cow Hopscotch Description Just like humans enjoy playing the game of Hopsco ...

  2. 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp

    题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...

  3. [BZOJ 3888] [Usaco2015 Jan] Stampede 【线段树】

    题目链接:BZOJ - 3888 题目分析 首先,计算出每个线段在 x 坐标 0 处出现的时间开始点和结束点,就转成了时间轴上的线段. 然后就是看每条线段是否被 y 比它小的线段完全覆盖了.注意求出的 ...

  4. BZOJ 1593: [Usaco2008 Feb]Hotel 旅馆 [线段树]

    传送门 题意: 操作1:找长为$len$的空区间并填满,没有输出$0$ 操作2:将$[l,r]$之间的区间置空 我真是太弱了这种线段树还写了一个半小时,中间为了查错手动模拟了$30min$线段树操作, ...

  5. BZOJ 4025: 二分图 [线段树CDQ分治 并查集]

    4025: 二分图 题意:加入边,删除边,查询当前图是否为二分图 本来想练lct,然后发现了线段树分治的做法,感觉好厉害. lct做法的核心就是维护删除时间的最大生成树 首先口胡一个分块做法,和hno ...

  6. COGS 577 蝗灾 线段树+CDQ分治

    第一次写cdq分治 感谢hhd&lty 这20亿对CP的指导(逃) 其实 就是 递归看左半部分对右半部分的贡献 (树状数组写挂了--临时改的线段树[大写的尴尬]) //By SiriusRen ...

  7. BZOJ3939 : [Usaco2015 Feb]Cow Hopscotch

    设f[i][j]表示到(i,j)的方案数,则有 $f[i][j]=\sum f[x][y](x<i,y<j,a[x][y]!=a[i][j])=\sum f[x][y](x<i,y& ...

  8. BZOJ 4411: [Usaco2016 Feb]Load balancing 线段树+二分

    code: #include <bits/stdc++.h> #define N 100060 #define M 1000000 #define lson x<<1 #def ...

  9. 【BZOJ 2957】楼房重建&&Codechef COT5 Count on a Treap&&【NOIP模拟赛】Weed 线段树的分治维护

    线段树是一种作用于静态区间上的数据结构,可以高效查询连续区间和单点,类似于一种静态的分治.他最迷人的地方在于“lazy标记”,对于lazy标记一般随我们从父区间进入子区间而下传,最终给到叶子节点,但还 ...

随机推荐

  1. iOS之核心动画

    .将动画的所有方法封装到一个类里面 MyCAHelper.h #import <Foundation/Foundation.h> #import <QuartzCore/Quartz ...

  2. iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译

    编号 iOS-Apple苹果官方文档翻译名称 博文链接地址 1 苹果API常用英语名词---iOS-Apple苹果官方文档翻译 http://www.cnblogs.com/ChenYilong/p/ ...

  3. ZOJ 3537 Cake (区间DP,三角形剖分)

    题意: 给出平面直角坐标系上的n个点的坐标,表示一个多边形蛋糕,先判断是否是凸多边形,若否,输出"I can't cut.".若是,则对这个蛋糕进行3角形剖分,切n-3次变成n-2 ...

  4. JS对输入判断变化屏蔽中文输入法输入时连续触发事件的方法

    代码如下: //智能搜索提示 IntelligenceSearch: function IntelligenceSearch() { $('#keyWord').on('input', functio ...

  5. vue的使用-项目总结

    1,这是一个重前端逻辑,轻交互,数据展示的项目,可读性差,2,组件划分的坑,复用过多的坑,复用过多导致要在js手动判断太多东西,不便于可读3,vuex的坑,数据分为后台请求数据的暂存,前端页面逻辑的状 ...

  6. 用例重试机制rerunfailures

    安装 rerunfailures插件 pip install pytest-rerunfailures 使用: pytest --reruns  重试次数 如:pytest --reruns  2 重 ...

  7. bootstrap历练实例: 基本胶囊式的导航菜单

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  8. SpringMVC+Spring+Mybatis整合程序之整合

    因为每个人思路不一样,所以我在这边先分享自己的思路对于mybatis开发持久层(DAO:DataBase Access Object 持久层访问对象)有两种.第一种:传统的开发持久层方式即需要程序员开 ...

  9. java在线聊天项目 swt可视化窗口Design 重新设计聊天窗口

    设计的聊天窗口如下: 制作过程: 首先,在默认的BorderLayout视图下, 上边也就是North处添加一个JPanel,将Layout调整为BorderLayout,West放一个JLabel用 ...

  10. 接口和类方法中的 SELF

    接口和类方法中的 SELF 由 王巍 (@ONEVCAT) 发布于 2015/06/10 我们在看一些接口的定义时,可能会注意到出现了首字母大写的 Self 出现在类型的位置上: protocol I ...