比赛描述

给定一个无向图,一共n个点,请编写一个程序实现两种操作:

D x y 从原图中删除连接x,y节点的边。

Q x y 询问x,y节点是否连通

输入

第一行两个数n,m(5<=n<=100000,1<=m<=100000)

接下来m行,每行一对整数 x y (x,y<=n),表示x,y之间有边相连。保证没有重复的边。

接下来一行一个整数 q(q<=100000)

以下q行每行一种操作,保证不会有非法删除。

输出

按询问次序输出所有Q操作的回答,连通的回答C,不连通的回答D

样例输入

3 3
1 2
1 3
2 3
5
Q 1 2
D 1 2
Q 1 2
D 3 2
Q 1 2

样例输出

C
C
D

题目来源

NUAA

#include<cstdio>
#include<iostream>
#include<cstring>
#include<map>
#include<algorithm>
#define M 100007
using namespace std;
int n,m,fa[M];
char ans[M];
struct node
{
int u, v;
bool d;
};node e[M],q[M];
map<int, bool> hash;
int Find(int x)
{
if(fa[x]==x)return x;
return fa[x]=Find(fa[x]);
}
void Union(int a, int b)
{
int r1=Find(a);
int r2=Find(b);
if(r1!=r2) fa[r2]=r1;
}
int main()
{
for(int i=;i<=M;i++)fa[i]=i;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d%d",&e[i].u,&e[i].v);
if(e[i].u>e[i].v)
swap(e[i].u,e[i].v);
}
int qnum;
scanf("%d",&qnum);
for(int i=;i<=qnum;i++)
{
char f;
cin>>f;
scanf("%d%d",&q[i].u,&q[i].v);
if(q[i].u>q[i].v)
swap(q[i].u,q[i].v);
if(f=='D')//将需要删除的边打上标记
{
q[i].d=true;
hash[q[i].u*M+q[i].v]=true;
}
else q[i].d=false;
}
for(int i=;i<=m;i++)//合并不需要删除的边
if(!hash[e[i].u*M+e[i].v])
Union(e[i].u,e[i].v);
int cnt=;
for(int i=qnum;i>=;i--)//倒序操作
{
//将需要删除的边合并,因为在删除之前它是连通的
if(q[i].d)Union(q[i].u,q[i].v);
else
{
if(Find(q[i].u)==Find(q[i].v))
ans[++cnt]='C';
else
ans[++cnt]='D';
}
}
for(int i=cnt;i>=;i--)
printf("%c\n", ans[i]);
}

连通 OR 不连通(NOJ 1044)的更多相关文章

  1. codeforces 590C C. Three States(bfs+连通块之间的最短距离)

    题目链接: C. Three States time limit per test 5 seconds memory limit per test 512 megabytes input standa ...

  2. 图的割点 桥 双连通(byvoid)

    [点连通度与边连通度] 在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合.一个图的点连通度的定义为,最小割点集 ...

  3. ZOJ 3781 - Paint the Grid Reloaded - [DFS连通块缩点建图+BFS求深度][第11届浙江省赛F题]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3781 Time Limit: 2 Seconds      Me ...

  4. UVA 10972 RevolC FaeLoN(边-双连通+缩点)

    很好的一道图论题,整整撸了一上午... 题意是给定一个无向图,要求将所有边变为有向边,求最少加入多少条有向边,使得该图强连通?这里先假设一个问题:给定一个无向子图,该子图具有怎样的性质才能使得将其无向 ...

  5. poj 3177 Redundant Paths(tarjan边双连通)

    题目链接:http://poj.org/problem?id=3177 题意:求最少加几条边使得没对点都有至少两条路互通. 题解:边双连通顾名思义,可以先求一下连通块显然连通块里的点都是双连通的,然后 ...

  6. UVA 572 -- Oil Deposits(DFS求连通块+种子填充算法)

    UVA 572 -- Oil Deposits(DFS求连通块) 图也有DFS和BFS遍历,由于DFS更好写,所以一般用DFS寻找连通块. 下述代码用一个二重循环来找到当前格子的相邻8个格子,也可用常 ...

  7. 最小生成树的Kruskal算法实现

    最近在复习数据结构,所以想起了之前做的一个最小生成树算法.用Kruskal算法实现的,结合堆排序可以复习回顾数据结构.现在写出来与大家分享. 最小生成树算法思想:书上说的是在一给定的无向图G = (V ...

  8. ACM知识点

    基础算法 高精 模拟 分治 贪心 排序 DFS 迭代加深搜索 BFS 双向BFS 动态规划 DAG上DP 树上DP 线性DP 图算法 最短路 FLYD DJATL BF 最大流 Dinic ISAP ...

  9. 【线段树】bzoj3995 [SDOI2015]道路修建

    线段树每个结点维护5个域: 整个区间的MST. 将两个左端点连通,两个右端点不连通,整个区间内选择2*(r-l+1)-2条边的最小生成森林,有两个连通块. 将两个右端点连通,两个左端点不连通,整个区间 ...

随机推荐

  1. 【page-monitor 前端自动化 上篇】初步调研

    转载文章:来源(靠谱崔小拽) 前端自动化测试主要在于:变化快,不稳定,兼容性复杂:故而,想通过较低的成本维护较为通用的自动化case比较困难.本文旨在通过page-monitor获取和分析dom结构, ...

  2. Django-C002-深入模型,到底有多深

    此文章完成度[100%]留着以后忘记的回顾.多写多练多思考,我会努力写出有意思的demo,如果知识点有错误.误导,欢迎大家在评论处写下你的感想或者纠错. ORM介绍:对象关系映射(英语:(Object ...

  3. shell脚本,编写1个弹出式菜单的shell程序并实现其简单的菜单功能。

    [root@localhost wyb]# cat zonghe.sh #!/bin/bash #zonghe usage(){ case $choice in ) read -p "ple ...

  4. Windows10系统可以禁止的服务(按名称排序)

    1.Application LayerGateway Service(Windows必须禁止的10项服务) 2.Bluetooth Handsfree Service(没有蓝牙的用户可以关闭) 3.B ...

  5. sudo指令和/etc/sudoers文件说明

    sudo 命令 -l 显示当前用户的sudo权限-l username 显示username的sudo权限-u username 以username的权限执行-k 强迫用户下一次执行sudo时问密码( ...

  6. Linux用户身份(命令详解与补正)

    基于Red Hat Enterprise Linux 7.5 Linux中的root就是存在于所有类UNIX系统中的超级用户,持有最高管理权限,能添加/删除用户.开关机.关闭或开启硬件或者系统服务等, ...

  7. RN原生的安卓UI组件

    https://facebook.github.io/react-native/docs/native-components-android.html 这里有一大堆的原生组件可以用,一些是平台自带的, ...

  8. Windows Server 2008 R2+SQL Server 2014 R2升级到Windows Server 2016+SQL Server 2016

    环境: 操作系统:Windows Server 2008 R2 数据库:SQL Server 2014 因SQL Server 2016可以无域创建AlwaysOn集群,集群只剩下单节点也不会挂掉,故 ...

  9. Python面向对象(约束,异常处理,md5加密)(五)

    1. 类的约束 1. 写一个父类. 父类中的某个方法要抛出一个异常 NotImplementedError class Base: def login(self): raise NotImplemen ...

  10. Python之路-迭代器 生成器 推导式

    迭代器 可迭代对象 遵守可迭代协议的就是可迭代对象,例如:字符串,list dic tuple set都是可迭代对象 或者说,能被for循环的都是可迭代对象 或者说,具有对象.__iter__方法的都 ...