【Luogu】P3195玩具装箱(斜率优化DP)
这题还是比较炫的
我们设f[i]是已经装了前i个玩具,且第i个玩具是某箱子里装的最后一个东西(废话)
那我们很轻松可以想到一个转移方程
for(int i=;i<=n;++i)
for(int j=;j<i;++j)
f[i]=min(f[i],f[j]+squa(sum[i]-sum[j]+i-j--L)
其中sum是玩具长度的前缀和,squa是平方。
但是O(50000*50000)瞬间爆炸
我们设f[i]是由f[j]转移过来的,j是最优转移,同时还有一个不那么优的转移k
那肯定有\(f[j]+squa(sum[i]-sum[j]+i-j-1-L)<f[k]+squa(c[i]-c[k]+i-k-1-L)\)
我们设\(M=sum[i]-1-L,T[j]=sum[j]+j\)
容易发现M只和i有关,T只和j有关
然后\(f[j]+squa(M-T[j])<f[k]+squa(M-T[k])\)
两边平方和展开划一划得到
\(((f[j]+squa(T[j]))-(f[k]+squa(T[k])))/(2*(T[j]-T[k]))>M\)
注意到f,T,M都是单调的
于是可以单调队列斜率优化
为什么是斜率优化呢?因为左面那个大于M的东西看着像斜率啊
233
附上一个讲斜率优化的博客
代码
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<algorithm>
#include<iostream> using namespace std; inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} long long f[];
long long M[];
long long T[];
long long c[];
int s[],h,t;
inline long long squa(long long a){ return a*a; }
inline long long count(int x,int y){ return ((f[x]+squa(T[x]))-(f[y]+squa(T[y])))/(*(T[x]-T[y])); } int main(){
int n=read(),l=read();
for(int i=;i<=n;++i){
c[i]=read()+c[i-];
f[i]=1e18;
T[i]=c[i]+i;
M[i]=c[i]+i-l-;
}
for(int i=;i<=n;++i){
while(h<t&&count(s[h],s[h+])<=M[i]) h++;
int x=s[h];
f[i]=f[x]+squa(M[i]-T[x]);
while(h<t&&count(s[t-],s[t])>=count(s[t],i)) t--;
s[++t]=i;
}
printf("%lld",f[n]);
return ;
}
【Luogu】P3195玩具装箱(斜率优化DP)的更多相关文章
- BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...
- luogu3195/bzoj1010 玩具装箱(斜率优化dp)
推出来式子然后斜率优化水过去就完事了 #include<cstdio> #include<cstring> #include<algorithm> #include ...
- BZOJ1010玩具装箱 - 斜率优化dp
传送门 题目分析: 设\(f[i]\)表示装前i个玩具的花费. 列出转移方程:\[f[i] = max\{f[j] + ((i - (j + 1)) + sum[i] - sum[j] - L))^2 ...
- BZOJ 1010 玩具装箱(斜率优化DP)
dp[i]=min(dp[j]+(sum[i]-sum[j]+i-j-1-L)^2) (j<i) 令f[i]=sum[i]+i,c=1+l 则dp[i]=min(dp[j]+(f[i]-f[j] ...
- HNOI2008玩具装箱 斜率优化
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- BZOJ 1010 HNOI2008 玩具装箱 斜率优化
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1010 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的 ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7874 Solved: 3047[Submit][St ...
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
随机推荐
- Android 8.0 NotificationChannel 采坑实例
Android O 上Notification的新特性: 通知通道功能 1. 简介: 通知通道功能使开发者管理自己应用的通知成为一个组或者一个通道,用户可以通过通知通道完成设置通知,如:阻止所有通知, ...
- ListView与ScrollView冲突的4种解决方案
问题解决方案1.手动设置ListView高度 经过测试发现,在xml中直接指定ListView的高度,是可以解决这个问题的,但是ListView中的数据是可变的,实际高度还需要实际测量.于是手动 ...
- Easyui combobox如何默认选中第一项???
以下代码可以实现combobox默认选中第一项,在实际开发中我们可能会用到! // 处理combobox默认选中的问题 <input id="user_type" class ...
- Ubuntu下软件的搜索与安装
本文为笔者原创,首发于简书(点击这里查看). 小白玩转linux的第一个拦路虎就是软件的安装了.本文结合自己在Ubuntu14.04下软件安装经验做一个总结. 1.如何搜索软件? apt-cache ...
- 洛谷 P2872 [USACO07DEC]道路建设Building Roads
题目描述 Farmer John had just acquired several new farms! He wants to connect the farms with roads so th ...
- js 前端不调接口直接下载图片
// 下载图片 downPhoto (path) { this.downloadFiles(path) }, // 下载 downloadFiles (content) { console.log(c ...
- 使用Google Colab训练神经网络(二)
Colaboratory 是一个 Google 研究项目,旨在帮助传播机器学习培训和研究成果.它是一个 Jupyter 笔记本环境,不需要进行任何设置就可以使用,并且完全在云端运行.Colaborat ...
- Linux命令权限 用户权限 组权限 文件、目录权限
Linux命令的格式是: 命令+选项+参数 命令是必须存在的,选项和参数可以不必存在,不写的情况是有默认的参数 Linux 一切皆文件 对于文件而言,只需要对文件进行读写就可以实现对文件内容内容的增删 ...
- javascript单元测试框架mochajs详解(转载)
章节目录 关于单元测试的想法 mocha单元测试框架简介 安装mocha 一个简单的例子 mocha支持的断言模块 同步代码测试 异步代码测试 promise代码测试 不建议使用箭头函数 钩子函数 钩 ...
- Linux文件系统概述二
VFS-目录项对象(dentry) 每个文件除了有一个索引节点 inode 数据结构外,还有一个目录项 dentry 数据结构 dentry 结构代表的是逻辑意义上的文件,描述的是文件逻辑上的属性,目 ...