Gone Fishing

John is going on a fishing trip. He has h hours available, and there are n lakes in the area all reachable along a single, one-way road. John starts at lake 1, but he can finish at any lake he wants. He can only travel from one lake to the next one, but he does not have to stop at any lake unless he wishes to. For each i (1 to n-1), the number of 5-minute intervals it takes to travel from lake i to lake i+1 is denoted ti. For example, t3=4 means that it takes 20 minutes to travel from lake 3 to 4.

To help plan his fishing trip, John has gathered some information about the lakes. For each lake i, the number of fish expected to be caught in the initial 5 minutes, denoted fi, is known. Each 5 minutes of fishing decreases the number of fish expected to be caught in the next 5-minute interval by a constant rate of di. If the number of fish expected to be caught in an interval is less than or equal to di, there will be no more fish left in the lake in the next interval. To simplify the planning, John assumes that no one else will be fishing at the lakes to affect the number of fish he expects to catch. Write a program to help John plan his fishing trip to maximize the number of fish expected to be caught. The number of minutes spent at each lake must be a multiple of 5.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing two integers n (2 ≤ n ≤ 25) and h (1 ≤ h ≤ 16). Next, there is a line of n integers specifying fi (0 ≤ fi ≤ 1000), then a line of n integers di (0 ≤ di ≤1000), and finally, a line of n-1 integers denoting ti (0 < ti < 192).

Output

For each test case, print the case number first. Then print the number of minutes spent at each lake, separated by commas, for the plan achieving the maximum number of fish expected to be caught. This is followed by a line containing the number of fish expected. If multiple plans exist, choose the one that spends as long as possible at lake 1. If there is still a tie, choose the one that spends as long as possible at lake 2, and so on.

Sample Input

3

2 1

10 1

2 5

2

4 4

10 15 20 17

0 3 4 3

1 2 3

4 4

10 15 50 30

0 3 4 3

1 2 3

Sample Output

Case 1:

45, 5

Number of fish expected: 31

Case 2:

240, 0, 0, 0

Number of fish expected: 480

Case 3:

115, 10, 50, 35

Number of fish expected: 724

好奇怪的题

看上去像是背包,后来发现似乎时间不够

然后发现可以枚举停在哪里,然后用堆维护在1到k钓鱼的时候怎么钓

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 0x7ffffff
#define pa pair<int,int>
#define mkp(a,b) make_pair(a,b)
#define pi 3.1415926535897932384626433832795028841971
using namespace std;
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void write(LL a)
{
if (a<){printf("-");a=-a;}
if (a>=)write(a/);
putchar(a%+'');
}
inline void writeln(LL a){write(a);printf("\n");}
int n,m,ans,len;
int v[],w[],t[];
int f[];
int sv[];
int wk[];
priority_queue<pa,vector<pa>,greater<pa> >q;
inline void solve(int k)
{
while (!q.empty())q.pop();
memset(wk,,sizeof(wk));
for (int i=;i<=k;i++)q.push(mkp(-v[i],i));
int rest=m-t[k],sum=;
if (rest<=)return;
while (rest&&!q.empty())
{
int v=-q.top().first,id=q.top().second;
//printf("q %d %d\n",v,id);
q.pop();
sum+=v;
wk[id]++;
if (v>w[id])q.push(mkp(-(v-w[id]),id));else q.push(mkp(,id));
rest--;
}
if (sum>ans){len=k;ans=sum;for (int i=;i<=n;i++)sv[i]=wk[i];return;}
if (sum<ans)return;
bool mrk=;
for (int i=;i<=k;i++)
{
if (wk[i]>sv[i])mrk=;
if (wk[i]!=sv[i])break;
}
if (mrk){len=k;ans=sum;for (int i=;i<=n;i++)sv[i]=wk[i];return;}
return;
}
inline void work(int cur)
{
n=read();m=read()*;
memset(sv,,sizeof(sv));
ans=;
for (int i=;i<=n;i++)v[i]=read();
for (int i=;i<=n;i++)w[i]=read();
for (int i=;i<=n;i++)t[i]=read()+t[i-];
for (int i=;i<=n;i++)solve(i);
printf("Case %d:\n",cur);
for (int i=;i<n;i++)printf("%d, ",*sv[i]);
printf("%d\n",*sv[n]);
printf("Number of fish expected: %d\n",ans);
}
int main()
{
int T=read(),tt=;while (T--)work(++tt);
}

LightOJ 1106

LightOJ1106 Gone Fishing的更多相关文章

  1. ZOJ 1015 Fishing Net(弦图判定)

    In a highly modernized fishing village, inhabitants there make a living on fishery. Their major tool ...

  2. bzoj 1242: Zju1015 Fishing Net 弦图判定

    1242: Zju1015 Fishing Net弦图判定 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 214  Solved: 81[Submit ...

  3. Poj/OpenJudge 1042 Gone Fishing

    1.链接地址: http://bailian.openjudge.cn/practice/1042/ http://poj.org/problem?id=1042 2.题目: Gone Fishing ...

  4. POJ 1042 Gone Fishing (贪心)(刘汝佳黑书)

    Gone Fishing Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 30281   Accepted: 9124 Des ...

  5. uva757 - Gone Fishing(馋)

    题目:uva757 - Gone Fishing(贪心) 题目大意:有N个湖泊仅仅有一条通路将这些湖泊相连. 每一个湖泊都会给最開始5分钟间隔内能够调到的鱼(f).然后给每过5分钟降低的鱼的数量(d) ...

  6. ●BZOJ 1006 [HNOI2008]神奇的国度(弦图最小染色数)○ZOJ 1015 Fishing Net

    ●赘述题目 给出一张弦图,求其最小染色数. ●题解 网上的唯一“文献”:<弦图与区间图>(cdq),可以学习学习.(有的看不懂) 摘录几个解决改题所需的知识点: ●子图和诱导子图(一定要弄 ...

  7. Cocos2d-X开发教程-捕鱼达人 Cocos2-x development tutorial - fishing talent

    Cocos2d-X开发教程-捕鱼达人 Cocos2-x development tutorial - fishing talent 作者:韩梦飞沙 Author:han_meng_fei_sha 邮箱 ...

  8. CSU 1859 Gone Fishing(贪心)

    Gone Fishing [题目链接]Gone Fishing [题目类型]贪心 &题解: 这题要先想到枚举走过的湖,之后才可以贪心,我就没想到这,就不知道怎么贪心 = = 之后在枚举每个湖的 ...

  9. Gone Fishing(贪心)

    Gone Fishing John is going on a fising trip. He has h hours available (1 ≤ h ≤ 16), and there are n ...

随机推荐

  1. 包含日志文件getshell

    包含日志文件getshell     一.包含日志文件漏洞利用概述           当我们没有上传点,并且也没有url_allow_include功能时,我们就可以考虑包含服务器的日志文件.    ...

  2. Linux OpenGL 实践篇-14-多实例渲染

    多实例渲染 OpenGL的多实例渲染是一种连续执行多条相同的渲染命令的方法,并且每条命令产生的结果都有轻微的差异,通常用于渲染大量的几何物体. 设想一个场景,比如太空,我们需要渲染数以万记的星球,如果 ...

  3. 动态规划初步-单向STP

    一.题目 给一个m行n列(m <= 10,n <= 100)的整数矩阵,从第一列任何位置出发每次往右.右下.右上走一格,最终达到最后一列.要求经过的整数之和最小.整个矩阵是环形的,即第一行 ...

  4. caffe的调试技巧 和 使用split层

    1.网络中的layer层的输出,只要没有作为其他层的输入,caffe的日志就会把这个top输出(如果你用那个网站画网络结构图,你也会发现这种情况的层的颜色是不一样的,是紫色的) 2.如果你想看某一层在 ...

  5. CPP-基础:TCHAR

    目 录 定义 使用原理 1.定义 TCHAR是通过define定义的字符串宏[1] 2.使用原理 因为C++支持两种字符串,即常规的ANSI编码(使用""包裹)和Unicode编码 ...

  6. visual c++ build tools的安装与使用

    https://visualstudio.microsoft.com/zh-hans/thank-you-downloading-visual-studio/?sku=BuildTools&r ...

  7. Jarvis OJ-Level4

    借助DynELF实现无libc的漏洞利用小结 #!/usr/bin/env python # coding:utf-8 from pwn import * elf = ELF('level4') wr ...

  8. PAT (Basic Level) Practise (中文)-1030. 完美数列(25)

    PAT (Basic Level) Practise (中文)-1030. 完美数列(25)   http://www.patest.cn/contests/pat-b-practise/1030 给 ...

  9. sublime text 3143 最新激活方法

    1)输入激活码 —– BEGIN LICENSE —– TwitterInc 200 User License EA7E-890007 1D77F72E 390CDD93 4DCBA022 FAF60 ...

  10. 译文 编写一个loader

    https://doc.webpack-china.org/contribute/writing-a-loader loader是一个导出了函数的node模块,当资源须要被这个loader所转换的时候 ...