Gone Fishing

John is going on a fishing trip. He has h hours available, and there are n lakes in the area all reachable along a single, one-way road. John starts at lake 1, but he can finish at any lake he wants. He can only travel from one lake to the next one, but he does not have to stop at any lake unless he wishes to. For each i (1 to n-1), the number of 5-minute intervals it takes to travel from lake i to lake i+1 is denoted ti. For example, t3=4 means that it takes 20 minutes to travel from lake 3 to 4.

To help plan his fishing trip, John has gathered some information about the lakes. For each lake i, the number of fish expected to be caught in the initial 5 minutes, denoted fi, is known. Each 5 minutes of fishing decreases the number of fish expected to be caught in the next 5-minute interval by a constant rate of di. If the number of fish expected to be caught in an interval is less than or equal to di, there will be no more fish left in the lake in the next interval. To simplify the planning, John assumes that no one else will be fishing at the lakes to affect the number of fish he expects to catch. Write a program to help John plan his fishing trip to maximize the number of fish expected to be caught. The number of minutes spent at each lake must be a multiple of 5.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing two integers n (2 ≤ n ≤ 25) and h (1 ≤ h ≤ 16). Next, there is a line of n integers specifying fi (0 ≤ fi ≤ 1000), then a line of n integers di (0 ≤ di ≤1000), and finally, a line of n-1 integers denoting ti (0 < ti < 192).

Output

For each test case, print the case number first. Then print the number of minutes spent at each lake, separated by commas, for the plan achieving the maximum number of fish expected to be caught. This is followed by a line containing the number of fish expected. If multiple plans exist, choose the one that spends as long as possible at lake 1. If there is still a tie, choose the one that spends as long as possible at lake 2, and so on.

Sample Input

3

2 1

10 1

2 5

2

4 4

10 15 20 17

0 3 4 3

1 2 3

4 4

10 15 50 30

0 3 4 3

1 2 3

Sample Output

Case 1:

45, 5

Number of fish expected: 31

Case 2:

240, 0, 0, 0

Number of fish expected: 480

Case 3:

115, 10, 50, 35

Number of fish expected: 724

好奇怪的题

看上去像是背包,后来发现似乎时间不够

然后发现可以枚举停在哪里,然后用堆维护在1到k钓鱼的时候怎么钓

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 0x7ffffff
#define pa pair<int,int>
#define mkp(a,b) make_pair(a,b)
#define pi 3.1415926535897932384626433832795028841971
using namespace std;
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void write(LL a)
{
if (a<){printf("-");a=-a;}
if (a>=)write(a/);
putchar(a%+'');
}
inline void writeln(LL a){write(a);printf("\n");}
int n,m,ans,len;
int v[],w[],t[];
int f[];
int sv[];
int wk[];
priority_queue<pa,vector<pa>,greater<pa> >q;
inline void solve(int k)
{
while (!q.empty())q.pop();
memset(wk,,sizeof(wk));
for (int i=;i<=k;i++)q.push(mkp(-v[i],i));
int rest=m-t[k],sum=;
if (rest<=)return;
while (rest&&!q.empty())
{
int v=-q.top().first,id=q.top().second;
//printf("q %d %d\n",v,id);
q.pop();
sum+=v;
wk[id]++;
if (v>w[id])q.push(mkp(-(v-w[id]),id));else q.push(mkp(,id));
rest--;
}
if (sum>ans){len=k;ans=sum;for (int i=;i<=n;i++)sv[i]=wk[i];return;}
if (sum<ans)return;
bool mrk=;
for (int i=;i<=k;i++)
{
if (wk[i]>sv[i])mrk=;
if (wk[i]!=sv[i])break;
}
if (mrk){len=k;ans=sum;for (int i=;i<=n;i++)sv[i]=wk[i];return;}
return;
}
inline void work(int cur)
{
n=read();m=read()*;
memset(sv,,sizeof(sv));
ans=;
for (int i=;i<=n;i++)v[i]=read();
for (int i=;i<=n;i++)w[i]=read();
for (int i=;i<=n;i++)t[i]=read()+t[i-];
for (int i=;i<=n;i++)solve(i);
printf("Case %d:\n",cur);
for (int i=;i<n;i++)printf("%d, ",*sv[i]);
printf("%d\n",*sv[n]);
printf("Number of fish expected: %d\n",ans);
}
int main()
{
int T=read(),tt=;while (T--)work(++tt);
}

LightOJ 1106

LightOJ1106 Gone Fishing的更多相关文章

  1. ZOJ 1015 Fishing Net(弦图判定)

    In a highly modernized fishing village, inhabitants there make a living on fishery. Their major tool ...

  2. bzoj 1242: Zju1015 Fishing Net 弦图判定

    1242: Zju1015 Fishing Net弦图判定 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 214  Solved: 81[Submit ...

  3. Poj/OpenJudge 1042 Gone Fishing

    1.链接地址: http://bailian.openjudge.cn/practice/1042/ http://poj.org/problem?id=1042 2.题目: Gone Fishing ...

  4. POJ 1042 Gone Fishing (贪心)(刘汝佳黑书)

    Gone Fishing Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 30281   Accepted: 9124 Des ...

  5. uva757 - Gone Fishing(馋)

    题目:uva757 - Gone Fishing(贪心) 题目大意:有N个湖泊仅仅有一条通路将这些湖泊相连. 每一个湖泊都会给最開始5分钟间隔内能够调到的鱼(f).然后给每过5分钟降低的鱼的数量(d) ...

  6. ●BZOJ 1006 [HNOI2008]神奇的国度(弦图最小染色数)○ZOJ 1015 Fishing Net

    ●赘述题目 给出一张弦图,求其最小染色数. ●题解 网上的唯一“文献”:<弦图与区间图>(cdq),可以学习学习.(有的看不懂) 摘录几个解决改题所需的知识点: ●子图和诱导子图(一定要弄 ...

  7. Cocos2d-X开发教程-捕鱼达人 Cocos2-x development tutorial - fishing talent

    Cocos2d-X开发教程-捕鱼达人 Cocos2-x development tutorial - fishing talent 作者:韩梦飞沙 Author:han_meng_fei_sha 邮箱 ...

  8. CSU 1859 Gone Fishing(贪心)

    Gone Fishing [题目链接]Gone Fishing [题目类型]贪心 &题解: 这题要先想到枚举走过的湖,之后才可以贪心,我就没想到这,就不知道怎么贪心 = = 之后在枚举每个湖的 ...

  9. Gone Fishing(贪心)

    Gone Fishing John is going on a fising trip. He has h hours available (1 ≤ h ≤ 16), and there are n ...

随机推荐

  1. 反射机制与IOC容器

    原文地址:http://blog.csdn.net/u010926964/article/details/47262771

  2. Hdoj—1789

    //大意理解 先排序 最早交的里面选最大值 扫描完了加没写的 排序后 应该是早交的和扣分多的在前 用结构体吧/*#include<stdio.h>#include<stdio.h&g ...

  3. DAG上的动态规划---嵌套矩形(模板题)

    一.DAG的介绍 Directed Acyclic Graph,简称DAG,即有向无环图,有向说明有方向,无环表示不能直接或间接的指向自己. 摘录:有向无环图的动态规划是学习动态规划的基础,很多问题都 ...

  4. 47.Number of Islands(岛的数量)

    Level:   Medium 题目描述: Given a 2d grid map of '1's (land) and '0's (water), count the number of islan ...

  5. thinkphp 结合phpexcel实现excel导入

    控制器文件: class ExcelAction extends Action { public function __construct() { import('ORG.Util.ExcelToAr ...

  6. 正则表达式匹配:根据key获取value

    需求 url请求html字符串,dytk值写在js里,可以看成是key-value的格式,需要提取dytk值. 解决方法 正则匹配 private string get_dytk(string htm ...

  7. HTML防止重复提交

    1 在你的表单页里HEAD区加入这段代码: <META HTTP-EQUIV="pragma" CONTENT="no-cache"> <ME ...

  8. [CODEVS] 2193 数字三角形WW

    数字三角形必须经过某一个点,使之走的路程和最大 从必须经过的点,向上向下分别DP两次的和即为答案. 还有一种思路是把和必须经过点同一行的设为-INF,这样就一定(大概)不会选择它们了. //Write ...

  9. MySql的基操勿六

    2018/12/6 星期四 19:34:07 authot by dabaine 数据库注释; -- 这就是注释 /*.....*/ 这也是注释 创建库; create databse [if not ...

  10. mysql:having 用法

    顺序:where -> group by -> min -> order by -> limit 在select语句中使用having 子句来指定一组行或聚合的过滤条件 hav ...