题目大意:

给定两个数字数组a[] , b[],在这两个数组中找一个最长的公共上升子序列,输出最长的长度

从别人地方copy的= = LCIS理解:

(1)f[i][j] 表示 a的前i,和b串前 j,以b[j]结尾的LCIS的长度;

if(a[i]!=b[j) f[i][j]=f[i-1][j];

else       f[i][j]=max(f[i-1][k]+1) 1<=k<j&&b[k]<b[j];

O(n^3)的复杂度,因为多了一维k,但f[i-1][k]的最大值显然可以在处理i-1的时候求出来

for(i=1;i<=n;i++)

maxn=0;

for(j=1;j<=m;j++)

f[i][j]=f[i-1][j];

if(a[i]>b[j]&&maxn<f[i-1][j])  maxn=f[i-1][j];

if(a[i]==b[j])    f[i][j]=maxn+1;

最后扫一遍f[n][1......m] ,取最大值。

(2)压缩空间,时间不变:

用f[j]表示 所有的a[i]和b的前j个,以b[j]结尾的LCIS的长度。

注意到(1)中,  if(a[i]>b[j]&&maxn<f[i-1][j])  maxn=f[i-1][j];  我们取得其实是f[1..i-1][j]的最大值,那不就是f[j]吗?

int f[N];

int a[M],b[N];

memset(f,0,sizeof(f));

for(i=1;i<=M;i++)

maxn=0;

for(j=1;j<=N;j++)

if(a[i]>b[j]&&maxn<f[j]) maxn=f[j];

if(a[i]==b[j])   f[j]=maxn+1;

最后扫一遍f[1......N];

 #include <cstdio>
#include <cstring> using namespace std;
const int N = ;
#define max(a,b) a>b?a:b
int dp[N] , a[N] , b[N];
/*可以看作是每次在第一个数据中提取一个数字,然后在第二个数组中
根据相同的数字来查找最长上升子序列,f[i][j],表示a[]前i个数据和
b数组前j个数据中能找到的以a[i]结尾的最长上升子序列的长度
但是因为下一行总是和前面所有行有关,不断更新找到前j个位置以某一个数结尾
的最大值,如果还是采用二维的,我们必须
if(a[i] == b[j])的时候,回过去建立
for(t = 1 ; t<i ; t++)
dp[i][j] = max(dp[i][j] , dp[t][k]+1);
复杂度就变成了n的3次方
这里压缩为1维数组的同时,不断更新到第j个位置所能达到的最大值
*/
void LCIS(int m , int n)
{
memset(dp , , sizeof(dp));
for(int i = ; i<=m ; i++){
/*
对于任意的f[i],f[j]来说,只要i>j,那么f[i]>f[j]的
这里k就是用来不断更新到离i最近的一个满足上升的位置
这样从离它最近的位置处进行更新这样得到的数据一定是
满足最优子结构的
比如2 , 3 , 5三个数,当把5加进来,直接用f[2]+1即可,
因为f[1]<=f[2]这是必定的,所以没必要执行f[1]+1,这样
就取消了重叠子结构的计算
*/
int k = ;
for(int j = ; j<=n ; j++){
if(a[i] == b[j]) dp[j] = max(dp[j] , dp[k] + );
//只有大于的时候才更新k,表示离它最近的满足的最长上升子序列的位置
if(a[i] > b[j] && dp[k] < dp[j]) k = j;
}
}
} int main()
{
int m , n , T;
scanf("%d" , &T);
while(T--){
scanf("%d" , &m);
for(int i = ; i<=m ; i++)
scanf("%d" , a+i); scanf("%d" , &n);
for(int i= ; i<=n ; i++)
scanf("%d" , b+i); LCIS(m , n);
int maxn = ;
for(int i = ; i <= n ; i++)
maxn = max(maxn , dp[i]); printf("%d\n" , maxn);
if(T>) puts("");
}
return ;
}

HDU 1423 最长上升公共子序列(LCIS)的更多相关文章

  1. hdu 1423 最长上升递增子序列

    #include <iostream> #include <cstdio> #include <cstring> using namespace std; ; in ...

  2. 一维数组解最长上升公共子序列(LCIS)

    #include<bits/stdc++.h> using namespace std; + ; int n,a[maxn],b[maxn],dp[maxn]; int main() { ...

  3. 最长公共子序列(LCS)、最长递增子序列(LIS)、最长递增公共子序列(LICS)

    最长公共子序列(LCS) [问题] 求两字符序列的最长公共字符子序列 问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...

  4. hdoj1423 最长上升公共子序列

    hdoj1423 题目分析: 两个数组a[n1] , b[n2], 求最长上升公共子序列. 我们可用一维存储 f[i] 表示 b 数组以 j 结尾, 与 a[] 数组构成的最长公共上升子序列. 对数组 ...

  5. 最长连续公共子序列(LCS)与最长递增公共子序列(LIS)

    最长公共子序列(不连续) 实际问题中也有比较多的应用,比如,论文查重这种,就是很实际的一个使用方面. 这个应该是最常见的一种了,不再赘述,直接按照转移方程来进行: 按最普通的方式就是,直接构造二维矩阵 ...

  6. LCIS 最长上升公共子序列问题

    首先点名一个串叫 L1,另一个叫L2. 明显的是一个DP,那么我们来探讨下如何求得答案. 朴素的算法 首先我们定义状态$dp[ i ][ j ]$表示L1中前i个与L2中前j个的最长公共上升子序列. ...

  7. 求最长连续公共子序列 POJ 3080

    Description The Genographic Project is a research partnership between IBM and The National Geographi ...

  8. 贼有意思[最长上升公共子序列](SAC大佬测试题)

    题目描述Awson 最近越来越蠢了,一天就只知道 zyys.他定义了一个 zyys 数列:这个数列满足:1.是另外两个数列 A,B 的公共子序列;2.数列单调递增.现在他有一个问题,我们假设知道两个长 ...

  9. poj3080Blue Jeans(在m个串中找到这m个串的 最长连续公共子序列)

    Description The Genographic Project is a research partnership between IBM and The National Geographi ...

随机推荐

  1. bzoj 1644: [Usaco2007 Oct]Obstacle Course 障碍训练课【spfa】

    洛谷的数据毒啊 把(i,j,k)作为一个点spfa,表示点(i,j)朝向k方向,然后向四个方向转移即可 #include<iostream> #include<cstdio> ...

  2. [App Store Connect帮助]五、管理构建版本(2)查看构建版本和文件大小

    您可以查看您为某个 App 上传的所有构建版本,和由 App Store 创建的变体版本的大小.一些构建版本在该 App 发布到 App Store 上后可能不会显示. 必要职能:“帐户持有人”职能. ...

  3. [Swift通天遁地]一、超级工具-(20)图片面部聚焦:使图像视图自动聚焦图片人物的面部位置

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  4. Final关键字解析

    final 在 Java 中是一个保留的关键字,可以声明变量.方法.类. 什么是final变量 / 类 / 方法? 任何变量前被 final 修饰就是 final 变量,定义的类前被 final 修饰 ...

  5. 洛谷 P1037 产生数

    题目描述 给出一个整数n(n<10^30)和k个变换规则(k≤15). 规则: 一位数可变换成另一个一位数: 规则的右部不能为零. 例如:n=234.有规则(k=2): 2->53-> ...

  6. C#模拟百度登录并到指定网站评论回帖(三)

    上次说到怎么获取BAIDUID,这个相信很多人都能够拿到就不多说了,今天一连说两个,获取token和raskey 2.利用以上获得的cookie直接访问页面 https://passport.baid ...

  7. python学习笔记(6)——for...in &while

    for x in ...循环就是把每个元素代入变量x,然后执行缩进块的语句. 注意:python中的格式也起到语法规则的作用,缩进块就是一个例 求和问题,比较异同 1/sum= ,,,,,,,,,]: ...

  8. caffe2:conda路径和权限问题

    在使用conda之后,总是不能直接使用 conda install 命令,需要把codna添加到系统路径,取代默认Python. 在-/.bashrc中,添加 # added by Anaconda2 ...

  9. GDB 学习

    通常使用gdb在Linux下调试C/C++程序,编译的时候加上-g选项(gcc -g ......).下面总结的是我自己经常使用(当然也有一些用的比较少)的gdb命令. (1)开始及退出 开始:gdb ...

  10. CAD绘制自定义实体(com接口)

    在cad使用过程中,用户可以绘制自定义实体.点击此处下载演示实例. 调用DrawCustomEntity函数,绘制一个自定义实体对象. 下面代码绘制一个自定义实体,C#代码实现如下: private ...