自湖南长沙培训以来的坑。。。一直未填,今天把这个问题解决掉。

参考:

1.http://www.cnblogs.com/Var123/p/5523068.html

2.http://blog.csdn.net/qzh_1430586275/article/details/51893154

3.http://blog.csdn.net/check_check_check/article/details/52101467

一、lucas定理的定义

(当且仅当p为质数)

很简短,下面看看应用和相关题目。

二、lucas定理的应用

1、[bzoj4591][Shoi2015][超能粒子炮·改]

题目描述:求 C(n,0)+C(n,1)+...+C(n,k)mod2333

推到过程:

易得,

原式=C(n/2333,0)∗C(nmod2333,0)+C(n/2333,0)∗C(nmod2333,1)+...+C(n/2333,k/2333)∗C(nmod2333,kmod2333)   mod 2333

也就是将原式中的各个mod 2333项拆分成两项再总体mod 2333

同类项合并,分两种部分考虑:
设k=k1*2333+k2 (0≤k1,k2)
1)对于k1部分
先考虑k1=0的情况,可以得出这些乘积的各个首项是C(n/2333,0),将其提出得到C(n/2333,0)*∑C(n%2333,i)(其中i∈[0,2333])
考虑k1=1的情况,可得C(n/2333,1)*∑C(n%2333,i)(其中i∈[0,2333])
考虑k1=2的情况,可得C(n/2333,2)*∑C(n%2333,i)(其中i∈[0,2333])
···  ···  ···  ···  ···  ···
提公因式→→→∑C(n/2333,j)*∑C(n%2333,i)(其中i∈[0,2333],j∈[0,k1))
重复3遍
∑C(n/2333,j)*∑C(n%2333,i)(其中i∈[0,2333],j∈[0,k1))
∑C(n/2333,j)*∑C(n%2333,i)(其中i∈[0,2333],j∈[0,k1))
∑C(n/2333,j)*∑C(n%2333,i)(其中i∈[0,2333],j∈[0,k1))
吼,各位就等了,看看k2部分吧
2)对于k2部分
原式=C(n/2333,k1)*C(n%2333,0)+C(n/2333,k1)*C(n%2333,1)+······+C(n/2333,k1)*C(n%2333,k%2333)
=C(n/2333,k1)*(∑C(n%2333,i))(其中i∈[0,k%2333])
综上,ans=∑C(n/2333,j)*∑C(n%2333,i)(其中i∈[0,2333],j∈[0,k1))+C(n/2333,k1)*(∑C(n%2333,i))(其中i∈[0,k%2333])
 
说了这么多,那么这个定理的用法是什么?
显然是递归求解组合数的模数咯~
 

所以对于这道题,我们先预处理出一个S(n,k)=∑C(n,i) (i∈[0,k]) (当然最后都是mod p意义下的),ans=S(n%2333,2332)*(∑C(n/2333,j)) (j∈[0,k1)) + C(n/2333,k1)*S(n%2333,k%2333)

ans中的S()一定可以用二维的东西在规定时空内求出,而∑C(n/2333,j)就是我们超能粒子炮`改的子问题,递归求解即可,另,C(n/2333,k1)也可以用lucas定理递归来解

于是这道题就口头ac了。

lucas定理和组合数学的更多相关文章

  1. lucas定理,组合数学问题

    对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况.就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 这里用到Lusac定理 ...

  2. Bzoj 4403: 序列统计 Lucas定理,组合数学,数论

    4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 328  Solved: 162[Submit][Status][Discuss] ...

  3. HDU 5226 Tom and matrix(组合数学+Lucas定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5226 题意:给一个矩阵a,a[i][j] = C(i,j)(i>=j) or 0(i < ...

  4. Lucas定理及应用

    额,前两天刚讲了数据结构,今天我来讲讲组合数学中的一种奇妙优化——Lucas 先看这样一个东西 没学过lucas的肯定会说:还不简单?处理逆元,边乘边膜呗 是,可以,但注意一下数据范围 你算这一次,你 ...

  5. [学习笔记]扩展LUCAS定理

    可以先做这个题[SDOI2010]古代猪文 此算法和LUCAS定理没有半毛钱关系. [模板]扩展卢卡斯 不保证P是质数. $C_n^m=\frac{n!}{m!(n-m)!}$ 麻烦的是分母. 如果互 ...

  6. hdu 3037 费马小定理+逆元除法取模+Lucas定理

    组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马 ...

  7. Lucas定理初探

    1.1 问题引入 已知\(p\)是一质数,求\(\dbinom{n}{m}\pmod{p}\). 关于组合数,它和排列数都是组合数学中的重要概念.这里会张贴有关这两个数的部分内容. 由于Lucas定理 ...

  8. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  9. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

随机推荐

  1. 解决 IDEA 中文乱码

    一.打开Intellij的根目录,找到下图的两个文件(根据你的系统是32位或64位选择其中一个配置文件),在配置文件中添加:-Dfile.encoding=UTF-8 二.   配置IDE编码 点击F ...

  2. openstack dnsmasq彭祖

    Openstack dnsmasq配置域名解析,openstackdnsmasq vi /etc/nova/nova.conf 在[DEFAULT]添加 dnsmasq_config_file=/et ...

  3. ubuntu 16.04 Sqoop 安装

    1.下载:https://mirrors.tuna.tsinghua.edu.cn/apache/sqoop/1.4.6/ sqoop-1.4.6.bin__hadoop-2.0.4-alpha.ta ...

  4. Spring通过注解注入有参

    1.通过注解方式注入有参的构造函数 把@Autowired注解放在构造函数上方,在构造函数里写上需要注入的形参即可 2.通过XML配置文件方式定义有参构造函数

  5. bzoj 1684: [Usaco2005 Oct]Close Encounter【数学(?)】

    枚举分母,然后离他最近的分子只有两个,分别判断一下能不能用来更新答案即可 #include<iostream> #include<cstdio> #include<cma ...

  6. bzoj 1650: [Usaco2006 Dec]River Hopscotch 跳石子【贪心+二分】

    脑子一抽写了个堆,发现不对才想起来最值用二分 然后判断的时候贪心的把不合mid的区间打通,看打通次数是否小于等于m即可 #include<iostream> #include<cst ...

  7. knockout jquery警告删除

    //触发删除的动作                $("a.delete").live('click', function () {                    var ...

  8. restful api 错误

    简介 随着移动开发和前端开发的崛起,越来越多的 Web 后端应用都倾向于实现 Restful API.Restful API 是一个简单易用的前后端分离方案,它只需要对客户端请求进行处理,然后返回结果 ...

  9. hdu2032

    http://acm.hdu.edu.cn/showproblem.php?pid=2032 #include<stdio.h> #include<math.h> #inclu ...

  10. PHP 操作数据库乱码 以及调试

    mysql> show create database pxscj;+----------+--------------------------------------------------- ...