题意

询问两个区间[smin,smax],[wmin,smax]中是否存在k的倍数,使得k最大

分析

将其转化成\([\frac{smin-1}k,\frac{smax}k],[\frac{wmin-1}k,\frac{wmax}k]\)

用分块思想做,注意到这只有\(O(\sqrt{n})\)种取值,于是可以分段计算,做到\(O(\sqrt{n})\)每次询问

我的理解:每一块为[i,j],j=b/(b/i)表示该块的最右端,而i表示该块的最左端,b在[i,j]上的值b/i相同

trick

代码

//每个块的范围是[i,j],而且每次由i求出j,每次判断更新答案
#include<iostream>
#include<cstdio>
using namespace std;
void doit()
{
int a,b,c,d;
scanf("%d%d%d%d",&a,&b,&c,&d);
a--;c--;
int i,j,ans;
if(d>b) swap(b,d),swap(a,c);
for(i=1;i<=d;i=j+1)
{
j=min(b/(b/i),d/(d/i));
if(i<=a) j=min(j,a/(a/i));
if(i<=c) j=min(j,c/(c/i));
if(b/i>a/i&&d/i>c/i) ans=j;
}
printf("%d\n",ans);
}
int main()
{
int T;
scanf("%d",&T);
while(T--) doit();
}

BZOJ3834:Solar Panels (分块)的更多相关文章

  1. 【BZOJ3834】[Poi2014]Solar Panels 分块好题

    [BZOJ3834][Poi2014]Solar Panels Description Having decided to invest in renewable energy, Byteasar s ...

  2. BZOJ3834[Poi2014]Solar Panels——分块

    题目描述 Having decided to invest in renewable energy, Byteasar started a solar panels factory. It appea ...

  3. bzoj 3834 [Poi2014]Solar Panels 数论分块

    3834: [Poi2014]Solar Panels Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 367  Solved: 285[Submit] ...

  4. 【bzoj3834】[Poi2014]Solar Panels 数论

    题目描述 Having decided to invest in renewable energy, Byteasar started a solar panels factory. It appea ...

  5. BZOJ3834 [Poi2014]Solar Panels 【数论】

    题目链接 BZOJ3834 题解 容易想到对于\(gcd(x,y) = D\),\(d\)的倍数一定存在于两个区间中 换言之 \[\lfloor \frac{a - 1}{D} \rfloor < ...

  6. BZOJ3834 : [Poi2014]Solar Panels

    问题相当于找到一个最大的k满足在$[x_1,x_2]$,$[y_1,y_2]$中都有k的倍数 等价于$\frac{x_2}{k}>\frac{x_1-1}{k}$且$\frac{y_2}{k}& ...

  7. 【BZOJ】3834: [Poi2014]Solar Panels

    http://www.lydsy.com/JudgeOnline/problem.php?id=3834 题意:求$max\{(i,j)\}, smin<=i<=smax, wmin< ...

  8. Luogu3579 Solar Panels

    整除分块枚举... 真的没有想到会这么简单. 要使一个数 \(p\) 满足 条件, 则 存在\(x, y\), \(a<=x \times p<=b\ \&\&\ c< ...

  9. [POI2014]Solar Panels

    题目大意: $T(T\le1000)$组询问,每次给出$A,B,C,D(A,B,C,D\le10^9)$,求满足$A\le x\le B,C\le y\le D$的最大的$\gcd(x,y)$. 思路 ...

随机推荐

  1. Solidworks如何制作动画2

    切换到Motion Study,然后定位到任意一帧,然后就可以摆弄当前装配体到新的位置和姿态,然后此时的时间和姿态就被记录下来了.以此类推可以多做几帧. 动画做好之后,点击播放可以预览.如果要保存,先 ...

  2. linux 环境 php 链接 sqlserver 2008

    说明 由于业务需要 在 linux 系统下的 PHP 环境中 要链接 sqlserver2008 数据库 . 添加PHP 链接数据库扩展 php-mssql dockerfile FROM hub.0 ...

  3. linux系列之-—03 压缩和解压缩命令

    tar命令 解包:tar zxvf FileName.tar 打包:tar czvf FileName.tar DirName gz命令 解压1:gunzip FileName.gz 解压2:gzip ...

  4. iOS清理WebView的缓存

    NSHTTPCookie *cookie; NSHTTPCookieStorage *storage = [NSHTTPCookieStorage sharedHTTPCookieStorage]; ...

  5. 图像处理之 opencv 学习---矩阵的操作

    OpenCV的一些操作,如生成随机矩阵,高斯矩阵,矩阵相乘之类的 /*功能:说明矩阵的一些操作方法*/#include "cv.h"//该头文件包含了#include " ...

  6. Android实现RecyclerView的下拉刷新和上拉载入很多其它

    需求 先上效果图, Material Design风格的下拉刷新和上拉载入很多其它. 源代码地址(欢迎star) https://github.com/studychen/SeeNewsV2 假设对于 ...

  7. Python2.7安装教程

    作者:zhanhailiang 日期:2014-11-16 [root@~/software]# yum install bzip* [root@~/software]# wget http://ww ...

  8. python day- 6 is 和 ==的区别 encode 和 decode

    1.is 和  == 的区别. == 是由来判断左右两边的内容是否相等. is 是用来判断内存地址是否相同. 引进 id (   )函数 小数据池: 对于字符串 ,数字 ,bool 值进行 id()计 ...

  9. sanic官方文档解析之Exception和Middleware,Listeners

    1,异常 异常是从处理请求内部抛出来的,并且通过Sanic自动的被处理异常,,异常用第一个参数携带异常信息,还可以接受在HTTP响应中要传递回的状态代码.引发异常 1.1引发异常 自动触发异常,,简单 ...

  10. 将异常(getStackTrace)转化成String

    方法一: private static String getStackMsg(Exception e) { StringBuffer sb = new StringBuffer(); StackTra ...